UNIVERSITÉ \mathbf{DE} TOULON ET DU VAR

Faculté des Sciences et Techniques

Département de Mathématiques

DEUG MIAS/MASS 2ème année. (2004-05)

M31: Algèbre bilinéaire

bouchitte@univ-tln.fr

Equipe pédagogique:

G. Bouchitté Travaux Dirigés. J.-M. Barbaroux barbarou@univ-tln.fr

J.-M. Ghez ghez@univ-tln.fr Y. Ropars ropars@univ-tln.fr Chaque exercice de ce fascicule est marqué d'un symbole:

- Le symbole \heartsuit mentionne les exercices fondamentaux que chaque étudiant doit avoir préparé avant la correction qui sera effectuée dans la séance de TD.
- \bullet Le symbole \clubsuit est utilisé pour les exercices complémentaires, à préparer par l'étudiant, et dont certains seront corrigés en TD.
- Le symbole \spadesuit accompagne les exercices d'entraînement pour lesquels, en cas de difficulté à les résoudre, l'étudiant peut demander des indications auprès de son responsable de TD, ou de l'un des membres de l'équipe pédagogique.

1. Révisions: Espaces vectoriels; applications linéaires.

Exercice 1. \heartsuit Soient

$$a = (3, 2, 1, 4); b = (2, 2, 2, 6); c = (4, 2, 0, 2); d = (-1, 0, 1, 2)); e = (0, 3, 2, 1)$$

et soient

E le sous-espace vectoriel de \mathbb{R}^4 engendré par a,b,c,d,e $(E=\mathrm{Vect}(\{a,b,c,d,e\})).$

F le sous-espace vectoriel de \mathbb{R}^4 engendré par a, b, c $(F = \text{Vect}(\{a, b, c\}))$.

G le sous-espace vectoriel de \mathbb{R}^4 engendré par $d, e \ (G = \text{Vect}(\{d, e\}))$.

Quelles sont les dimensions de $E, F, G, F+G, F\cap G$?

Exercice 2. Soit E l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} . Soient $F = \{h \in E \mid h \text{ est paire }\}$ et $G = \{h \in E \mid h \text{ est impaire }\}$.

- i) Soit $h \in E$. Montrer que f(x) = h(x) + h(-x) est paire. De façon similaire, construire une fonction impaire à partir de h.
 - ii) Montrer, en utilisant i), que $E = F \oplus G$.

Exercice 3. \heartsuit Les sous-espaces vectoriels suivants de \mathbb{R}^3 sont-ils en somme directe?

$$F_1 = \{x_1 = -x_2\} \text{ et } G_1 = \{x_1 + x_2 - 2x_3 = 0\}$$

d'une part, et

$$F_2 = \{x_1 = -x_2\} \text{ et } G_2 = \{x_1 = 0, x_2 - x_3 = 0\}$$

d'autre part.

Exercice 4. \clubsuit Montrer que les sous-espaces vectoriels de \mathbb{R}^4 engendrés par

$$a = (1, -2, 0, 3), b = (3, -1, 1, 0) \text{ et } c = (-2, -1, -1, 3)$$

d'une part, et

$$d = (7, 1, 3, -6), e = (-2, -1, -1, 3)$$

d'autre part, sont identiques. Indiquer une base de ce sous-espace et la compléter de manière à obtenir une base de \mathbb{R}^4 .

Exercice 5. \spadesuit Soit $n \in \mathbb{N}^*$ et soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à n. On considère la famille

$$\mathcal{B} = (1, X, X(X-1), \dots, X(X-1)(X-2) \dots (X-n+1))$$

Montrer que \mathcal{B} est une base de E.

Exercice 6. \heartsuit

- i) Montrer que la famille $A = \{x \mapsto e^{\alpha x} : \alpha \in \mathbb{R}\}$ est libre dans $E = \mathcal{F}(\mathbb{R}; \mathbb{R})$, l'ensemble des applications de \mathbb{R} dans \mathbb{R} .
- ii) Montrer que la fonction $x\mapsto e^{-x^2}$ n'est pas dans $\mathrm{Vect}(A)$. (Etudier la décroissance à l'infini.)

Exercice 7. A Montrer que les familles $A = \{x \mapsto |x - \alpha| : \alpha \in \mathbb{R}\}$ et $B = \{x \mapsto (x - \alpha)_+ : \alpha \in \mathbb{R}\}$ sont libres dans $E = \mathcal{F}(\mathbb{R}; \mathbb{R})$. (Etudier par exemple la dérivabilité de $\sum_{k=0}^{n} \lambda_k |x - \alpha_k|$.)

Exercice 8. \heartsuit Soient A, B et C trois sous-espaces vectoriels du \mathbb{K} -espace vectoriel E tels que

$$B \subset C$$
, $A \cap B = A \cap C$, et $A + B = A + C$.

Montrer que B = C.

Exercice 9. \heartsuit Soient les fonctions f_1 et f_2 définies sur $\mathbb R$ par

$$f_1(x) = e^{2x}$$
 et $f_2(x) = xe^{2x}$

Soit $E = {\alpha f_1 + \beta f_2} \mid (\alpha, \beta) \in \mathbb{R}^2$.

- i) Démontrer que E est un espace vectoriel sur \mathbb{R} .
- ii) Démontrer que (f_1, f_2) est une base de E.
- iii) Soit φ définie par

$$\varphi: \begin{array}{ccc} E & \to & E \\ f & \mapsto & f' \end{array}$$

Démontrer que φ est un endomorphisme de E et donner la matrice A de φ dans la base (f_1, f_2) .

- iv) Calculer A^n pour $n \in \mathbb{N}$.
- v) Application: Calculer la dérivée n-ième de la fonction $f_3: x \mapsto (3x+1)e^{2x}$.

Remarque: On peut aussi répondre à cette question en effectuant un calcul direct.

Exercice 10. \heartsuit Soit $\mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3.

- i) Montrer que $(X, X 1, X^2 + 1, 2X^2 3X + 1)$ n'est pas une famille libre.
- ii) Montrer que $(X, X 1, X^2)$ est une famille libre.
- iii) Montrer que $(1, X, X^2 1, (X^2 1)(X + 1))$ est une base de $\mathbb{R}_3[X]$.
- iv) On définit les applications q et r de la façon suivante: Pour tout polynôme P, q(P) est le quotient de la division euclidienne de P par X^2-1 , et r(P) est le reste de la division euclidienne de P par X^2-1 . Montrer que q et r sont des applications linéaires de $\mathbb{R}_3[X]$ dans $\mathbb{R}_3[X]$.
- v) Donner des bases de l'image et du noyau pour q et pour r.

Exercice 11. \clubsuit Soit $E = \mathbb{K}[X]$ l'espace vectoriel des polynômes sur \mathbb{K} . Soit $A \in E$ tel que $\deg(A) = n + 1 \ (n \in \mathbb{N}^*)$.

i) Montrer que

$$F = \{PA \mid P \in E\}$$

est un sous-espace vectoriel de E.

- ii) Soit $G = \mathbb{K}_n[X]$ l'ensemble des polynômes de E de degré inférieur ou égal à n. Montrer que G est un sous-espace vectoriel de E. Quelle est la dimension de G? Montrer que $F \oplus G = E$.
 - iii) Soit

$$f: \begin{array}{ll} E \to E \\ P \mapsto R = \end{array}$$
le reste de la division euclidienne de P par A

Montrer que f est une application linéaire. Donner Im f et Ker f. Montrer que f est un projecteur.

Exercice 12. \heartsuit Soit l'endomorphisme $f: \mathbb{R}^3 \to \mathbb{R}^3$ représenté dans la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 par la matrice

$$A = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{array}\right)$$

- i) Montrer que $\mathcal{B}' = (e'_1, e'_2, e'_3) = (e_2 + e_3, e_1 + e_3, e_1 + e_2)$ est une base de \mathbb{R}^3 . Calculer la matrice \tilde{A} de f dans la base \mathcal{B}' .
- ii) Calculer en fonction de $n \in \mathbb{N}^*$ les coefficients de la matrice \tilde{A}^n . En déduire l'expression de A^n .
 - iii) On considère les suites réelles $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ définies par

$$x_0 = y_0 = z_0 = 1$$
 et $\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = 2x_n \\ y_{n+1} = x_n + 3y_n - z_n \\ z_{n+1} = x_n + y_n + z_n \end{cases}$

Calculer x_n , y_n et z_n en fonction de n.

Exercice 13. \spadesuit Soient $A = \begin{pmatrix} -1 & 1 & 1 \\ -1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$ et f l'endomorphisme de \mathbb{R}^3 dont A est la matrice dans la base canonique.

- i) Trouver trois éléments non nuls $u_1,\,u_2,\,u_3$ de \mathbb{R}^3 tels que $\left\{\begin{array}{ll} f(u_3)&=&-u_3\\f(u_2)&=&u_3-u_2\\f(u_1)&=&u_2-u_1 \end{array}\right.$
- ii) Démontrer que A est semblable à $B=\begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$ iii) Ecrire B sous la forme B B + B
- iii) Ecrire B sous la forme $B = B_1 + B_2$ avec $B_1B_2 = B_2B_1$. En déduire A^n pour $n \in \mathbb{N}^*$.

Exercice 14. \heartsuit Pour chacune des matrices A_i (i=1,2,3,4), déterminer le noyau et l'image de l'application linéaire u_i canoniquement associé à A_i dans les cas suivants:

$$A_{1} = \begin{pmatrix} -1 & 1 & 1 \\ 3 & -2 & -4 \\ -2 & 1 & 3 \end{pmatrix} \quad A_{2} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
$$A_{3} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 \\ -1 & 0 & -1 & 0 \end{pmatrix} \quad A_{4} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Exercice 15. \spadesuit Pour tout élément (a,b,c) de \mathbb{R}^3 , on note

$$M(a,b,c) = \begin{pmatrix} a+c & b & -c \\ b & a+2c & -b \\ -c & -b & a+c \end{pmatrix}$$

Soit $E = \{M(a, b, c) \mid (a, b, c) \in \mathbb{R}^3\}$. On pose I = M(1, 0, 0), J = M(0, 1, 0), K = M(0, 0, 1).

- i) Démontrer que E est un espace vectoriel sur \mathbb{R} ; quelle est sa dimension?
- ii) Démontrer que E est une algèbre commutative sur \mathbb{R} .
- iii) Démontrer que E n'est pas intègre, c'est à dire qu'il existe deux matrices non nulles A et B de E telles que AB = 0.

Exercice 16. \clubsuit Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & 0 \end{array}\right)$$

i) Soient les vecteurs

$$u = (1,0,1); v = (2,1,2); w = (1,-1,0)$$

Démontrer que (u, v, w) est une base de \mathbb{R}^3 .

ii) Quelle est la matrice de f dans la base (u, v, w)?

Exercice 17. \heartsuit E étant un espace vectoriel et f un endomorphisme de E, on dit que f est un projecteur si $f \circ f = f$.

Soient F et G deux sous-espaces vectoriels de E tels que $E = F \oplus G$. On définit les applications p et q par:

$$p: \begin{array}{cccc} E = F \oplus G & \to & E \\ x = y + z & \mapsto & y \end{array}$$

$$q: \begin{array}{cccc} E = F \oplus G & \to & E \\ x = y + z & \mapsto & z \end{array}$$

i) Montrer que p et q sont des applications linéaires. Donner Im p, Ker p, Im q et Ker q.

ii) Etablir les propriétés suivantes:

$$p \circ p = p$$
, $q \circ q = q$, $p \circ q = q \circ p = 0$, $p + q = \mathrm{Id}_E$

En particulier, ceci démontre que p et q sont des projecteurs. On dit que p est le projecteur sur F parallèlement à G et q est le projecteur sur Q parallèlement à F.

iii) Réciproquement, montrer que si p est un projecteur on a

$$E = \operatorname{Im}(p) \oplus \operatorname{Ker}(p)$$

iv) Si E est de dimension finie n, montrer qu'il existe une base $\mathcal{B}(E)$ de E dans laquelle la matrice $A = \text{Mat}(p, \mathcal{B}(E))$ de p dans la base $\mathcal{B}(E)$ est une matrice diagonale de la forme

$$A = \left(\begin{array}{cc} \mathbf{I_r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array}\right)$$

où I_r est la matrice unité d'ordre r.

Exercice 18. \clubsuit Soit n un élément de \mathbb{N}^* ; soit u un endomorphisme de \mathbb{R}^n tel que $u^2 \neq 0$ et $u^3 = 0$. (Rappel: u^n signifie ici $u \circ u \circ \ldots \circ u$, n fois).

- i) Démontrer qu'il existe un élément x de \mathbb{R}^n tel que la famille $(x, u(x), u^2(x))$ soit une famille libre.
 - ii) En déduire que $n \geq 3$.
- iii) On suppose que n=3; quelle est la matrice de u dans la base $(x,u(x),u^2(x))$? Déterminer $\operatorname{Im} u$ et $\operatorname{Ker} u$.

Exercice 19. \spadesuit Soient E un espace vectoriel de dimension n et f un endomorphisme de E. On note $N_k = \operatorname{Ker}(f^k)$ et $I_k = \operatorname{Im}(f^k)$, où $f^k = f \circ f \circ \ldots \circ f$, k fois.

i) Montrer que pour tout $k \in \mathbb{N}$ on a $\begin{cases} N_k \subset N_{k+1} \\ I_{k+1} \subset I_k \end{cases}$ ii) Montrer que s'il existe k_0 tel que $I_{k_0} = I_{k_0+1}$, alors pour tout $p \in \mathbb{N}$, on a $I_{k_0} = I_{k_0+p}$.

- iii) Montrer qu'il existe toujours un tel entier k_0 .

Exercice 20. \spadesuit Soient f et g deux endomorphismes de E, \mathbb{K} -e.v. de dimension finie. On note par $g|_{f(E)}$ la restriction de g au sous-espace vectoriel f(E).

- i) Déterminer Im $(g|_{f(E)})$ et Ker $(g|_{f(E)})$.
- ii) Démontrer que

$$\dim \operatorname{Im} f - \dim \operatorname{Im} (g \circ f) = \dim (\operatorname{Im} f \cap \operatorname{Ker} g)$$

Exercice 21. \clubsuit Soient E_1 et E_2 deux sous-espaces vectoriels de \mathbb{R}^n $(n \in \mathbb{N}^*)$. Montrer que les deux assertions suivantes sont équivalentes:

- i) Il existe un endomorphisme f de \mathbb{R}^n tel que $\text{Im} f = E_1$ et $\text{Ker} f = E_2$.
- ii) $\dim(E_1) + \dim(E_2) = n$.

Exercice 22. \heartsuit Soient E un espace vectoriel de dimension finie et E' un sous-espace vectoriel de E. Soient F un espace vectoriel et F' un sous-espace vectoriel de F. On considère une application linéaire f de E vers F. Montrer

- i) $\dim(f(E')) = \dim E' \dim(\operatorname{Ker} f \cap E')$.
- ii) $\dim(f^{-1}(F')) = \dim(\operatorname{Im} f \cap F') + \dim(E) \operatorname{rg}(f).$

Exercice 23.

Soit E un espace vectoriel sur \mathbb{R} de dimension n $(n \in \mathbb{N}^*)$. Soit f un endomorphisme de E tel que $f \circ f = -Id_E$, où Id_E est l'application identité de E. Soient x_1, x_2, \ldots, x_p des éléments de l'espace vectoriel E pour lesquels la famille $(x_1, x_2, \ldots, x_p, f(x_1), f(x_2), \ldots, f(x_{p-1}))$ est

- i) Démontrer que la famille $(x_1, x_2, \ldots, x_p, f(x_1), f(x_2), \ldots, f(x_p))$ est libre.
- ii) Démontrer par récurrence que si p est un entier tel que $2 \le 2p \le n+1$, il existe p éléments x_1, x_2, \ldots, x_p de E tels que $(x_1, x_2, \ldots, x_p, f(x_1), f(x_2), \ldots, f(x_p))$ soit une famille libre.
 - iii) Que peut-on conclure sur la parité de n?
 - iv) On suppose n=4; écrire la matrice de f dans une base de la forme $(x_1,x_2,f(x_1),f(x_2))$.

2. Formes linéaires (Espace dual, orthogonal, base duale)

Exercice 24. \heartsuit Soit E un K-espace vectoriel de dimension finie. On désigne par A et B des parties de E. Etablir successivement les propriétés suivantes

- i) $A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$.
- ii) $\{O_E\}^{\perp}=E^*; E^{\perp}=\{O_{E^*}\}.$ iii) $(\operatorname{Vect} A)^{\perp}=A^{\perp} \quad (A\neq\emptyset).$
- iv) $(A^{\perp})^{\perp} = \text{Vect} A \quad (A \neq \emptyset).$ v) $(A \cup B)^{\perp} = A^{\perp} \cap B^{\perp}.$

Exercice 25. \heartsuit Soient E un \mathbb{K} -espace vectoriel et F, G deux sous-espaces vectoriels de E.

- i) Démontrer que $(F+G)^{\perp}=F^{\perp}\cap G^{\perp}$. ii) Démontrer que $(F\cap G)^{\perp}\supset F^{\perp}+G^{\perp}$.
- iii) Supposons que E est de dimension finie. Démontrer que l'on a

$$(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$$

et aussi

$$E = F \oplus G \Leftrightarrow E^* = F^{\perp} \oplus G^{\perp}$$

Exercice 26. \spadesuit Soit E (respectivement F) un K-espace vectoriel de dimension n (respectivement de dimension m), muni de la base $\mathcal{B} = (e_j)_{1 \leq j \leq n}$ (respectivement muni de la base $\mathcal{C} = (f_i)_{1 \leq i \leq m}$. Pour $(i,j) \in \{1,\ldots,m\} \times \{1,\ldots,n\}$, on définit l'application linéaire u_{ij} de Edans F par

$$u_{ij}(e_k) = \delta_{jk} f_i$$

où δ_{jk} est le symbole de Kronecker qui vaut 1 si k=j et qui vaut 0 si $k\neq j$.

i) Montrer que $\mathcal{D} = \{u_{ij}, 1 \leq i \leq m, 1 \leq j \leq m\}$ est une base du K-espace vectoriel $\mathcal{L}_{\mathbb{K}}(E,F)$ (espace vectoriel des applications linéaires de E dans F). En déduire

$$\dim_{\mathbb{K}}(\mathcal{L}_K(E,F)) = (\dim_{\mathbb{K}} E) \times (\dim_{\mathbb{K}} F)$$

- ii) Montrer que le \mathbb{K} -espace vectoriel $\mathcal{L}_{\mathbb{K}}(E,F)$ et l'espace vectoriel des matrices $\mathcal{M}_{m,n}(\mathbb{K})$ sont isomorphes.
 - iii) Etudier les cas particuliers suivants
 - \bullet $E = \mathbb{K}$.
 - $F = \mathbb{K}$.

Exercice 27. \heartsuit Soit E l'espace vectoriel réel des applications de classe \mathcal{C}^1 (continues à dérivées continues) de [-1,1] dans \mathbb{R} : $E = \mathcal{C}^1([-1,1], \mathbb{R})$. Parmi les applications de E dans \mathbb{R} suivantes, quelles sont celles qui sont linéaires?

$$\begin{array}{ll} f \mapsto f(1); & f \mapsto f(1) + 1; & f \mapsto f'(0); \\ f \mapsto (f'(0))^2; & f \mapsto |f(1)|; & f \mapsto f'(0) + |f(1)|; \\ f \mapsto \int_0^1 f(x) \mathrm{d} x; & f \mapsto \int_0^1 (f'(x))^2 \mathrm{d} x; & f \mapsto f(1) + \int_0^1 f(x) \mathrm{d} x. \end{array}$$

Exercice 28. \heartsuit On considère $E = \mathbb{R}^3$ muni de la base canonique $\mathcal{C}_3 = (e_1, e_2, e_3)$. Les coordonnées d'un vecteur x dans la base \mathcal{C}_3 sont notées x_1, x_2, x_3 :

$$x = (x_1, x_2, x_3) = x_1e_1 + x_2e_2 + x_3e_3$$

On considère les applications f_1 , f_2 et f_3 de E dans \mathbb{R} définies par

$$f_1(x) = x_1 + x_2$$

 $f_2(x) = x_1 - x_2$
 $f_3(x) = x_1 + x_2 - x_3$

i) Montrer que f_1 , f_2 et f_3 sont des éléments de E^* .

- ii) Quelles sont les coordonnées de f_1 , f_2 et f_3 dans la base duale \mathcal{C}_3^* de la base canonique de E?
 - iii) La famille (f_1, f_2, f_3) est-elle une base de E^* ?
- iv) Si oui, on notera $(f_1, f_2, f_3) = \mathcal{B}^*$. De quelle base \mathcal{B} de E, \mathcal{B}^* est-elle la base duale? (on dit que \mathcal{B} est la base préduale de \mathcal{B}^* , ou plus simplement la base duale de \mathcal{B}^*).

Exercice 29. \heartsuit On considère $E = \mathbb{R}_2[x]$ l'espace vectoriel réel des fonctions polynomiales de degré inférieur ou égal à 2, muni de sa base canonique $\mathcal{B} = (e_1, e_2, e_3) = (1, x, x^2)$.

Soient f_1, f_2, f_3 les applications de E dans \mathbb{R} définies par

$$f_1(P) = P(0), \quad f_2(P) = P(0) + P'(0), \quad f_3(P) = P''(0)$$

Répondre aux mêmes questions que dans l'exercice 28.

Exercice 30. \clubsuit Soit E un \mathbb{K} -espace vectoriel de dimension finie n $(n \in \mathbb{N}^*)$. Soient \mathcal{B} , \mathcal{C} deux bases de E et \mathcal{B}^* , \mathcal{C}^* les bases duales respectives de \mathcal{B} , \mathcal{C} . On note

$$P = (p_{ij})_{1 \le i, j \le n} = \operatorname{Mat}_{\mathcal{B} \to \mathcal{C}} \in \operatorname{GL}_n(\mathbb{K})$$

la matrice de passage de $\mathcal B$ vers $\mathcal C$ et

$$Q = (q_{ij})_{1 \le i,j \le n} = \operatorname{Mat}_{\mathcal{B}^* \to \mathcal{C}^*} \in \operatorname{GL}_n(\mathbb{K})$$

la matrice de passage de \mathcal{B}^* vers \mathcal{C}^* .

Montrer que

$$Q = {}^t P^{-1}$$

 $({}^tP^{-1}$ est la matrice transposée de P^{-1} . C'est aussi l'inverse de la matrice transposée de P.) Exemples: (Pour résoudre les questions suivantes, on pourra utiliser le résultat précédent et la base canonique des espaces considérés)

- a) Montrer que les vecteurs $v_1 = (2, 1, 4)$, $v_2 = (3, 2, 3)$ et $v_3 = (-1, -1, 2)$ de \mathbb{R}^3 forment une base et en déterminer la base duale.
 - b) Montrer que les formes linéaires

$$f_1(x, y, z) = x + 2y + z$$
, $f_2(x, y, z) = 2x + 3y + 3z$, $f_3(x) = 3x + 7y + z$

forment un base du dual de \mathbb{R}^3 , et trouver la base duale (ou préduale) de cette base.

c) Soient $E = \mathbb{R}_3[x]$ le \mathbb{R} -espace vectoriel des polynômes de degré inférieur ou égal à 3, et $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ les formes linéaires sur E définies par

$$\forall P \in E, \quad \varphi_1(P) = P(0), \quad \varphi_2(P) = P(1), \quad \varphi_3(P) = P''(0), \quad \varphi_4(P) = P''(1)$$

Vérifier que $(\varphi_1, \varphi_2, \varphi_3, \varphi_4)$ est une base duale de E^* et en déterminer sa base duale.

Exercice 31. \heartsuit Soient E un \mathbb{K} -espace vectoriel et $\varphi \in E^*$ non nulle.

- i) Montrer que φ est surjective.
- ii) On suppose désormais E de dimension finie n. Quelle est la dimension de $H = \text{Ker}\varphi$. Un tel sous-espace H est appelé hyperplan de E et on dit que " $\varphi(x) = 0$ " est une équation de H.
- iii) Réciproquement, on se donne un sous-espace vectoriel H de E de dimension (n-1). Démontrer qu'il existe $\varphi \in E^*$ non nulle telle que $H = \text{Ker}\varphi = \{x \in E \mid \varphi(x) = 0\}$. Quel est l'ensemble des équations d'un tel sous-espace vectoriel.

Exercice 32. \heartsuit Former les équations du sous-espace vectoriel F de \mathbb{R}^4 engendré par les vecteurs u=(1,2,0,1) et v=(1,-1,2,0) ($F=\mathrm{Vect}(u,v)$).

Exercice 33. \heartsuit Soit $E = \mathbb{R}^3$. Déterminer l'orthogonal du sous-espace vectoriel F de E dans les cas suivants

- i) F est le plan vectoriel d'équation 2x + 3y z = 0.
- ii) F est la droite vectorielle engendrée par le vecteur (1, -1, 1).

Exercice 34. \spadesuit On désigne par E le \mathbb{R} -espace vectoriel \mathbb{R}^4 . Soit F le sous-espace vectoriel engendré par (u_1, u_2, u_3) , où $u_1 = (1, 1, 0, 2)$, $u_2 = (1, 0, 2, 1)$, et $u_3 = (1, 2, -2, 3)$.

- i) Déterminer la dimension de F et en donner une base.
- ii) Déterminer F^{\perp} , le sous-espace vectoriel orthogonal de F, et en donner une base.
- iii) Donner un système d'équations de F.

Exercice 35. \clubsuit Dans $E = \mathbb{R}^4$, on considère le sous-espace vectoriel F engendré par (1, 1, 1, 1), (-1, 1, -2, 2), (-1, 5, -4, 8), (-3, 1, -5, 3).

- i) Quelle est la dimension de F?
- ii) Quelle est la dimension du sous-espace vectoriel $F' = F^{\perp}$ de E^* ?
- iii) Montrer que l'image de $V=(x,y,z,t)\in E$ par toute forme linéaire $f\in F'$ peut s'écrire

$$f(V) = 4ax + 4by - (3a+b)z - (a+3b)t$$

En déduire deux formes linéaires f_1 et f_2 constituant une base de F'. Trouver les composantes de f_1 et f_2 dans la base de E^* , duale de la base canonique de E.

Exercice 36. \heartsuit Pour $n \in N^*$, soit $E = \mathcal{M}_n(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices carrées d'ordre n. Pour $A = (a_{ij})_{1 \le i,j \le n} \in E$, on définit la trace de A, notée $\operatorname{tr}(A)$, par

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$
 (somme des éléments diagonaux de A)

i) Montrer que l'application

$$\operatorname{tr}: \begin{array}{c} E \to \mathbb{K} \\ A \mapsto \operatorname{tr}(A) \end{array}$$

est une forme linéaire sur E. Vérifier que tr est non nulle et donner la dimension de Ker(tr).

- ii) Quelles sont les composantes de tr dans la base duale de la base canonique de E?
- iii) Soit $p \in \mathbb{N}^*$. Montrer que

$$\forall A \in \mathcal{M}_{n,p}(\mathbb{K}), \ \forall B \in \mathcal{M}_{p,n}(\mathbb{K}), \ \text{on a} \ \operatorname{tr}(AB) = \operatorname{tr}(BA)$$

iv) Déduire que $\forall A \in \mathcal{M}_n(\mathbb{K}), \forall P \in GL_n(\mathbb{K}), \operatorname{tr}(P^{-1}AP) = \operatorname{tr}(A)$. ($GL_n(\mathbb{K})$ est l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$).

Exercice 37. A Polynômes d'interpolation de Lagrange

Soient $n \in \mathbb{N}^*$, $x_0, x_1, \dots, x_n \in \mathbb{R}$ deux à deux distincts. Pour chaque i dans $\{0, 1, \dots, n\}$, notons

$$L_i(x) = \prod_{0 \le j \le n, \ j \ne i} \left(\frac{x - x_j}{x_i - x_j} \right)$$

- i) Quelle est la dimension de l'espace vectoriel $E = \mathbb{R}_n[x]$ des fonctions polynomiales réelles de degré inférieur ou égal à n? Montrer que $\mathcal{B} = (L_0, L_1, \dots, L_n)$ est une base de E.
 - ii) Soit $P \in E$. Quelles sont les coordonnées de P dans la base \mathcal{B} ?
 - iii) Déterminer la base duale \mathcal{B}^* de la base \mathcal{B} .
- iv) Soit $\varphi \in E^*$. Quelles sont les coordonées de φ dans la base \mathcal{B}^* ? Applications:
- a) Soit une application f de \mathbb{R} dans \mathbb{R} . Montrer qu'il existe un élément P de E, et un seul, tel que

$$\forall i \in \{0, 1, \dots, n\}, \quad P(x_i) = f(x_i)$$

b) Montrer qu'il existe un élément $(\lambda_0,\lambda_1,\dots,\lambda_n)\in\mathbb{R}^{n+1}$ unique tel que

$$\forall P \in E, \quad \int_0^1 P(x) dx = \sum_{i=0}^n \lambda_i P(x_i).$$

3. Formes bilinéaires, formes bilinéaires symétriques, formes quadratiques.

Exercice 38. \heartsuit

i) Les formes suivantes sont-elles bilinéaires?

•
$$f: \begin{array}{l} \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} \\ ((x,y); (x',y')) \mapsto xx' + yy' \\ \bullet g: \begin{array}{l} \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} \\ ((x,y); (x',y')) \mapsto x^2x' + yy' \end{array}$$

- ii) Trouver la matrice A de f dans la base canonique \mathcal{C} de \mathbb{R}^2 .
- iii) Soit $\mathcal{B} = ((1,0); (1,1))$ une autre base de \mathbb{R}^2 . Donner la matrice de f par deux méthodes.
- iv) Les bases \mathcal{C} et \mathcal{B} sont-elles des bases orthonormales pour f?
- v) Soit $F = \text{Vect}\{(1,1)\}$. Déterminer

$$\{x \in \mathbb{R}^2 \mid \forall y \in F, f(x, y) = 0\}$$

vi) Trouver la forme quadratique q associée à f. Puis, à partir de q, retrouver f.

Exercice 39. \heartsuit Soient a, b deux nombres réels tels que $a \leq b$ et soit $E = \mathcal{C}([a, b]; \mathbb{R})$ l'espace vectoriel réel des applications continues de [a, b] dans \mathbb{R} . On considère l'application

$$\varphi: \begin{array}{l} E\times E \to \mathbb{R} \\ (f,g) \mapsto \varphi(f,g) = \int_a^b (f(t)g(t)\mathrm{d}t) \end{array}$$

Montrer que φ est une forme bilinéaire symétrique positive, non dégénérée sur E.

Exercice 40. \heartsuit Soient $(n,p) \in \mathbb{N}^* \times \mathbb{N}^*$ et $E = \mathcal{M}_{n,p}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices à n lignes et p colonnes. On considère l'application

$$\varphi: \begin{array}{ll} E \times E \to \mathbb{R} \\ (A,B) \mapsto \varphi(A,B) = \operatorname{tr}({}^t\!A\,B) \end{array}$$

où "tr" désigne l'application trace définie dans l'exercice 36.

- i) Montrer que φ est une forme bilinéaire symétrique définie sur E.
- ii) Quelle est la forme quadratique q associée à φ ? Pour $A \in E$, exprimer q(A) à l'aide des coefficients de A.
 - iii) On suppose ici n=p=2. Ecrire la matrice de φ dans la base canonique de E.

Exercice 41. \heartsuit Soient E un \mathbb{R} -espace vectoriel, φ une forme bilinéaire sur E, f, g deux éléments de $\mathcal{L}(E)$ (espace des endomorphismes de E) et θ l'application

$$\theta: \begin{array}{ll} E\times E \to \mathbb{R} \\ (x,y) \mapsto \theta(x,y) = \varphi(f(x),g(y)) \end{array}$$

- i) Montrer que θ est une forme bilinéaire sur E
- ii) On suppose dans cette question que f = g.
 - Montrer que si φ est symétrique, alors θ l'est aussi.
 - \bullet On suppose θ symétrique. Donner une condition suffisante sur f pour que φ soit symétrique.

Exercice 42. \clubsuit Soient E un \mathbb{R} -espace vectoriel

i) Soit φ une forme bilinéaire sur E. Montrer qu'il existe un couple (φ_s, φ_a) unique de formes bilinéaires sur E tel que φ_s est symétrique, φ_a est antisymétrique et $\varphi = \varphi_s + \varphi_a$ (on explicitera $\varphi_s(x,y)$ et $\varphi_a(x,y)$ à l'aide de $\varphi(x,y)$).

On dit que φ_s (respectivement φ_a) est la partie symétrique (respectivement antisymétrique) de φ .

ii) Application. Soient θ_1 et θ_2 deux formes linéaires sur E. Montrer que

$$\varphi: \begin{array}{ll} E\times E \to \mathbb{R} \\ (x,y) \mapsto \varphi(x,y) = \theta_1(x)\theta_2(y) \end{array}$$

est une forme bilinéaire sur E. Déterminer φ_s et φ_a .

Exercice 43. \heartsuit Soit E un \mathbb{R} -espace vectoriel, f une forme bilinéaire symétrique sur E et soit q la forme quadratique associée à f. Etablir les identités suivantes:

- i) $\forall (x,y) \in E^2, \ q(x+y) = q(x) + q(y) + 2f(x,y).$ ii) $\forall (x,y) \in E^2, \ q(x+y) q(x-y) = 4f(x,y).$ iii) $Identit\acute{e} \ du \ parall\'elogramme: \ \forall (x,y) \in E^2, \ q(x+y) + q(x-y) = 2q(x) + 2q(y).$ iv) $Identit\'e \ de \ la \ m\'ediane: \ q\left(\frac{x+y}{2}\right) + q\left(\frac{x-y}{2}\right) = \frac{q(x) + q(y)}{2}.$ v) $\forall (x,y,z) \in E^3, \ q(x+y) + q(y+z) + q(x+z) q(x+y+z) = q(x) + q(y) + q(z).$

Exercice 44. \clubsuit On considère $E = \mathbb{R}^2$ muni de sa base canonique $\mathcal{C}_2 = (e_1, e_2)$ et f la forme bilinéaire sur E définie par

$$f: \begin{array}{ccc} E \times E & \to & \mathbb{R} \\ (x,y) = ((x_1,x_2),(y_1,y_2)) & \mapsto & f(x,y) = 33x_1y_1 - 14(x_1y_2 + x_2y_1) + 6x_2y_2 \end{array}$$

- i) Ecrire la matrice de f dans la base C_2 : $A = Mat(f; C_2)$.
- ii) On considère les vecteurs suivants dans \mathbb{R}^2 : $e_1' = e_1 + 2e_2$, $e_2' = 2e_1 + 5e_2$. Montrer que $\mathcal{B} = (e'_1, e'_2)$ est une base de \mathbb{R}^2 .
- iii) Déterminer la matrice de f dans la base \mathcal{B} : $A' = \operatorname{Mat}(f;\mathcal{B})$. Donner l'expression de f(x,y) dans la base \mathcal{B} .
 - iv) Donner l'expression de la forme quadratique q associée à f dans les bases \mathcal{C}_2 et \mathcal{B} .

Exercice 45. \heartsuit On considère $E = \mathbb{R}^3$ muni de sa base canonique $\mathcal{C}_3 = (e_1, e_2, e_3)$ et f la forme bilinéaire sur E définie par

$$\begin{array}{ccc} E \times E & \to & \mathbb{R} \\ f: & (x,y) & \mapsto & f(x,y) = x_1y_1 + 6x_2y_2 + 56x_3y_3 - 2(x_1y_2 + x_2y_1) \\ & & + 7(x_1y_3 + x_3y_1) - 18(x_2y_3 + x_3y_2) \end{array}$$

- où $x=(x_1,x_2,x_3)=\sum_{i=1}^3 x_ie_i$ et $y=(y_1,y_2,y_3)=\sum_{i=1}^3 y_ie_i$. i) Ecrire la matrice de f dans la base \mathcal{C}_3 : $A=\operatorname{Mat}(f;\mathcal{C}_3)$
- ii) On considère les vecteurs suivants dans \mathbb{R}^3 : $e_1' = e_1, e_2' = 2e_1 + e_2, e_3' = -3e_1 + 2e_2 + e_3$. Montrer que $\mathcal{B} = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 .
- iii) Quelle est la matrice de f dans la base \mathcal{B} : $A' = \operatorname{Mat}(f,\mathcal{B})$? Exprimer f(x,y) dans la base \mathcal{B} .
 - iv) Donner l'expression de la forme quadratique q associée à f dans les bases \mathcal{C}_3 et \mathcal{B} .

Exercice 46. \heartsuit Soient $E = \mathbb{R}_2[x]$ l'espace vectoriel réel des fonctions polynomiales de degré au plus 2 et $\mathcal{C}_3 = (e_0, e_1, e_2)$ la base canonique de cet espace, définie par $e_i(x) = x^i$ (i = 0, 1, 2). On considère l'application

$$\varphi:\begin{array}{ccc} E\times E & \to & \mathbb{R} \\ (P,Q) & \mapsto & \varphi(P,Q) = \int_0^1 P(x)Q(x)\mathrm{d}x \end{array}$$

- i) Montrer que φ est une forme bilinéaire symétrique sur E.
- ii) Donner la matrice de φ dans la base \mathcal{C}_3 : $A = \operatorname{Mat}(\varphi; \mathcal{C}_3)$. Donner l'expression de $\varphi(P,Q)$ à l'aide des coordonnées de P et Q dans la base canonique \mathcal{C}_3 . Quel est le rang de φ ?
- iii) Soit q la forme quadratique associée à φ . Donner l'expression de $\varphi(P)$ à l'aide des coordonnées de P dans la base C_3 .

Exercice 47. \clubsuit Reprendre l'exercice précédent en remplaçant φ par l'application θ définie par

$$\theta(P,Q) = \int_0^1 P'(x)Q'(x)\mathrm{d}x.$$

Exercice 48. \spadesuit Soit E un K-espace vectoriel et f une forme bilinéaire sur E. On dit que la forme bilinéaire f est réductible lorsqu'il existe deux formes linéaires φ_1 et φ_2 sur E, non nulles, telles que

$$\forall (x,y) \in E^2, \ f(x,y) = \varphi_1(x)\varphi_2(y).$$

On suppose dans la suite que E est de dimension finie n. Soit \mathcal{B} une base de E. On se propose de démontrer le résultat suivant:

$$f$$
 est réductible $\Leftrightarrow \operatorname{rg} f = 1$

i) Supposons f réductible. Soit A_1 (respectivement A_2) la matrice de φ_1 (respectivement φ_2) dans la base \mathcal{B} :

$$A_1 = \operatorname{Mat}(\varphi_1; \ \mathcal{B}, (1_{\mathbb{K}})), \quad A_2 = \operatorname{Mat}(\varphi_2; \ \mathcal{B}, (1_{\mathbb{K}}))$$

Montrer que

$$f(x,y) = {}^tX {}^tA_1 A_2 Y,$$

où X (respectivement Y) est la matrice colonne de x (respectivement de y) dans la base \mathcal{B} . En déduire que

$$\operatorname{rg} f = 1.$$

ii) Réciproquement, soit f une forme bilinéaire sur E de rang 1. Donnez la forme de la matrice de f dans la base \mathcal{B} . En déduire que f est réductible.

Exercice 49. \heartsuit Déterminer le rang et la signature des formes quadratiques suivantes (Onutilisera la méthode de Gauss pour la réduction en carrés).

- ilisera la methode de Gauss pour la reduction en carres).

 i) $E = \mathbb{R}^3$ et $q(x_1, x_2, x_3) = x_1^2 + x_3^2 + 2x_1x_2 + 4x_2x_3 + 2x_1x_3$.

 ii) $E = \mathbb{R}^3$ et $q(x_1, x_2, x_3) = 13x_1^2 + 10x_2^2 + 5x_3^2 12x_2x_3 6x_1x_3 4x_1x_2$.

 iii) $E = \mathbb{R}^3$ et $q(x_1, x_2, x_3) = (x_1 x_2)^2 + (x_2 x_3)^2 + (x_3 x_1)^2$.

 iv) $E = \mathbb{R}^3$ et $q(x) = x_1x_2 + x_2x_3 + x_3x_1$.

 v) $E = \mathbb{R}^4$ et $q(x) = x_1^2 + 2x_2^2 3x_3^2 2x_3x_4 + x_1x_4 + 3x_1x_2 x_2x_4$.

 vi) $E = \mathbb{R}^3$ et $q(x) = x_1^2 + x_2^2 + x_3^2 4(x_1x_2 + x_2x_3 + x_3x_1)$.

 vii) $E = \mathbb{R}^4$ et $q(x) = x_1^2 3x_2^2 4x_3^2 + \lambda x_4^2 + 2\mu x_1x_2$, avec $(\lambda, \mu) \in \mathbb{R}^2$.

Exercice 50. \heartsuit Soient $E = \mathbb{R}^2$ et $q(x) = x_1^2 - x_2^2$ une forme quadratique sur E.

- i) Donner la forme polaire associée à q.
- ii) La forme quadratique q est-elle dégénérée?
- iii) Soient u = (1,0), v = (1,1) et w = (0,1). Donner $\{u\}^{\perp}, \{v\}^{\perp}, \ker q, E^{\perp}$ et $\{0_E\}^{\perp}$.

- **Exercice 51.** \clubsuit Mêmes questions que pour l'exercice 50 avec i) $E = \mathbb{R}^2$ et $q(x) = x_1^2$; u = ((1,0), v = (1,1) et w = (0,1). ii) $E = \mathbb{C}^2$ et $q(x) = x_1^2$; u = (1+i,i), v = (i,1-i) et w = (i,i).

Exercice 52. \heartsuit Soient $E = \mathbb{R}^3$ et $q(x) = x_1^2 - x_3^2$ une forme quadratique sur E. Soient u = (1,0,0), v = (1,1,1) et w = (0,1,0).

- i) $\{u, v, w\}$ est-elle une base q-orthogonale de \mathbb{R}^3 ?
- ii) Donner $\{u\}^{\perp}$, $\{v\}^{\perp}$, $\{w\}^{\perp}$, $\{u,v\}^{\perp}$, $\{v,w\}^{\perp}$, $\{u,w\}^{\perp}$, E^{\perp} , $\{0_E\}^{\perp}$.
- iii) La base canonique de \mathbb{R}^3 est-elle q-orthogonale?

Exercice 53. \spadesuit Mêmes questions que pour l'exercice 52 avec $E = \mathbb{R}^3$ et

$$q(x) = x_1 x_2 + x_3^2$$
.

Exercice 54. \heartsuit Soient $E = \mathbb{R}_2[X]$ et l'application q définie par

$$q: \begin{array}{ll} E \to \mathbb{R} \\ P \mapsto \int_0^1 [P'(X)]^2 \mathrm{d}X \end{array}$$

- i) Montrer que q est une forme quadratique sur E.
- ii) Donner sa forme polaire.
- iii) La forme quadratique q est-elle dégénérée?

Exercice 55. \spadesuit Même questions que dans l'exercice 54 pour $E = \mathbb{R}_2[X]$ et

$$q: \begin{array}{c} E \to \mathbb{R} \\ P \mapsto [P'(0)]^2 \end{array}$$

Exercice 56. \heartsuit Soient $E = \mathbb{R}^3$ et φ la forme bilinéaire sur E définie par

$$\varphi: \begin{array}{l} E \times E \to \mathbb{R} \\ (x,y) \mapsto x_1 y_1 + x_2 y_2 - x_3 y_3 \end{array}$$

où $x = (x_1, x_2, x_3)$ et $y = (y_1, y_2, y_3)$.

Soit q la forme quadratique associée à φ .

- i) Est-ce que q est dégénérée?
- ii) Rappeler l'expression générale d'une forme bilinéaire sur E et construire à l'aide de φ un isomorphisme de E sur E^* .
 - iii) Soit

$$H = \{x \in E \mid x_1 = x_3 \text{ et } x_2 = 0\}$$

Déterminer H^{\perp} . A-t-on $\dim(H) + \dim(H^{\perp}) = 3$? A-t-on $E = H + H^{\perp}$?

Exercice 57. \heartsuit *Suite de l'exercice 40 avec* n = p = 2.

Soit (E_{ij}) la base canonique de $E = \mathcal{M}_2(\mathbb{R})$. On considère les matrices

$$M_{ij} = \frac{1}{2} (E_{ij} + E_{ji}), \text{ et } N = \frac{1}{2} (E_{12} - E_{21})$$

Montrer que $(M_{11}, M_{1,2}, M_{2,2}, N)$ est une base φ -orthogonale de $\mathcal{M}_2(\mathbb{R})$.

4. Réduction des endomorphismes.

Exercice 58. © Un vecteur propre d'un endomorphisme peut-il être associé à deux valeurs propres distinctes?

Exercice 59. \heartsuit Etudier les éléments propres de $u \in \mathcal{L}(E)$ dans chacun des cas suivants

- i) u est une homothétie: $u = \lambda \operatorname{Id}_E (\lambda \in \mathbb{K})$.
- ii) u est un projecteur, avec $u \neq 0$ et $u \neq \mathrm{Id}_E$.
- iii) u est une symétrie, avec $u \neq \mathrm{Id}_E$, $u \neq -\mathrm{Id}_E$.

Exercice 60. \heartsuit E étant un \mathbb{R} -espace vectoriel, soit $u \in \mathcal{L}(E)$ tel que $u^2 = -\mathrm{Id}_E$. Quel est le spectre $\mathrm{Sp}(u)$ de l'endomorphisme u?

Exercice 61. \heartsuit Etudier les éléments propres d'un endomorphisme de rang 1.

Exercice 62. \heartsuit Cherchez les valeurs propres et les vecteurs propres des matrices réelles suivantes et déterminer celles qui sont diagonalisables.

$$\begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}, \begin{pmatrix} 5 & -1 & 9 \\ 3 & 4 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -2 & 1 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & -2 \\ 0 & 4 & 3 \end{pmatrix}, \begin{pmatrix} -2 & -2 & 1 \\ -2 & 1 & -2 \\ 1 & -2 & -2 \end{pmatrix}, \begin{pmatrix} 2 & 0 & 0 \\ -3 & -1 & 3 \\ 3 & 3 & -1 \end{pmatrix},$$

$$\begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 0 & a & a^2 \\ 1/a & 0 & a \\ 1/a^2 & 1/a & 0 \end{pmatrix} a \neq 0, \begin{pmatrix} 1 & 3 & 0 & 0 \\ 4 & 2 & 0 & 0 \\ 1 & -1 & 5 & -3 \\ 2 & 0 & 4 & -2 \end{pmatrix},$$

$$\begin{pmatrix} 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 7 & 1 & 2 & 1 \\ -17 & -6 & -1 & 0 \end{pmatrix}, \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}.$$

Exercice 63. \spadesuit On considère la matrice $A = \begin{pmatrix} 13 & 16 & 16 \\ -5 & -7 & -6 \\ -6 & -8 & -7 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$. Montrer que A n'est pas diagonalisable. Trigonaliser A.

Exercice 64.

On considère les matrices

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}) \text{ et } B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}) .$$

- i) Déterminer les valeurs propres et les sous-espaces propres associés aux matrices A et B.
- ii) Les matrices A et B sont-elles diagonalisables?
- iii) Mêmes questions si on considère A et B dans $\mathcal{M}_3(\mathbb{C})$.

Exercice 65. \spadesuit Pour quelles valeurs des paramètres réels a, b, c, d, e, f les matrices suivantes sont-elles diagonalisables dans $\mathcal{M}_4(\mathbb{R})$?

$$A = \left(\begin{array}{cccc} 1 & a & b & c \\ 0 & 2 & d & e \\ 0 & 0 & 2 & f \\ 0 & 0 & 0 & 2 \end{array}\right) \;, \quad B = \left(\begin{array}{cccc} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 2 & f \\ 0 & 0 & 0 & 2 \end{array}\right)$$

Exercice 66. \heartsuit Pour $A \in \mathcal{M}_n(\mathbb{K})$ et $\alpha \in \mathbb{K}$, on pose

$$B = A + \alpha I_n.$$

- i) Comparer les polynômes caractéristiques de A et B.
- ii) Comparer les spectres de A et B.

iii) Montrer que A et B ont les mêmes sous-espaces propres. En déduire que A et B sont simultanément diagonalisables ou non.

Application: Soit

$$A = \left(\begin{array}{cccc} 16 & 1 & 1 & 1\\ 1 & 16 & 1 & 1\\ 1 & 1 & 16 & 1\\ 1 & 1 & 1 & 16 \end{array}\right)$$

Etudier la diagonalisation de A (Il est demandé d'effectuer la diagonalisation sans calcul de polynôme caractéristique).

Exercice 67. \spadesuit Soit $\mathcal{C}_3 = (e_1, e_2, e_3)$ la base canonique du \mathbb{R} -espace vectoriel \mathbb{R}^3 . On considère l'application linéaire qui à $\mathbf{x} = (x_1, x_2, x_3)$ associe $\mathbf{y} = (y_1, y_2, y_3)$ définie par

$$\begin{cases} y_1 &= 4x_3, \\ y_2 &= x_1 + 2x_2 + x_3, \\ y_3 &= 2x_1 + 4x_2 - 2x_3. \end{cases}$$

- i) Ecrire la matrice A de f dans la base canonique C_3 .
- ii) Calculer les valeurs propres de f. Vérifier que f est diagonalisable.
- iii) Est-ce que f est un automorphisme?
- iv) Calculer les vecteurs propres de f.
- v) Soit \mathcal{B}' la base constituée des vecteurs propres (on ordonnera les vecteurs de \mathcal{B}' en respectant l'ordre croissant des valeurs propres). Ecrire la matrice de passage P de \mathcal{C}_3 vers \mathcal{B}' . Calculer P^{-1} .
- vi) On considère l'endomorphisme g défini par $g = f^3 9f + \mathrm{id}_{\mathbb{R}^3}$ où on a noté $f^3 = f \circ f \circ f$. Calculer la matrice de g dans \mathcal{B}' puis calculer la matrice de g dans \mathcal{C}_3 .

Exercice 68. \clubsuit On considère deux suites complexes $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par la donnée de u_0 et v_0 et par

$$\left(\begin{array}{c} u_n \\ v_n \end{array}\right) = A \left(\begin{array}{c} u_{n-1} \\ v_{n-1} \end{array}\right) \quad (n \ge 1),$$

où $A \in \mathcal{M}_2(\mathbb{C})$, de valeurs propres λ_1 et λ_2 . Calculer, pour tout n, u_n et v_n en fonction de u_0 , v_0 , n et des éléments de A,

- a) lorsque A est diagonalisable.
- b) lorsque A n'est pas diagonalisable.

Exercice 69. \spadesuit Soit f l'application de $\mathbb{R}_3[X]$ dans $\mathbb{R}_3[X]$ définie par $f(P) = X^3 P\left(\frac{1}{X}\right)$.

- i) Vérifier que $f(P) \in \mathbb{R}_3(X)$. Montrer que f est un endomorphisme de $\mathbb{R}_3[X]$. Calculer $f \circ f$. Que peut-on en déduire pour $\operatorname{Sp}(f)$, le spectre de f?
- ii) Expliciter la matrice A associée à f dans la base canonique de $\mathbb{R}_3[X]$: $\mathcal{B} = (1, X, X^2, X^3)$.
- iii) Calculer les valeurs propres et vecteurs propres de f. L'endomorphisme f est-il diagonalisable?

Exercice 70. \spadesuit Pour les matrices de $\mathcal{M}_3(\mathbb{C})$ suivantes, calculer les valeurs propres et les vecteurs propres. Diagonaliser, quand c'est possible, sinon trigonaliser. Ecrire les matrices de passage qui permettent de passer de la matrice de départ à sa forme réduite.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -3 & 1 \\ 1 & -1 & -1 \end{pmatrix} , B = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{pmatrix}$$

Exercice 71. \heartsuit Soit

$$A = \begin{pmatrix} -2 & -1 & 2 \\ -15 & -6 & 11 \\ -14 & -6 & 11 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}) \quad (A = \operatorname{Mat}(u, \mathcal{C}_3)).$$

- i) Calculer $P_A(\lambda)$, le polynôme caractéristique de A. La matrice A est-elle diagonalisable?
- ii) Montrer qu'il existe une base \mathcal{B} de \mathbb{R}^3 dans laquelle u admet pour matrice

$$T = \operatorname{Mat}(u, \mathcal{B}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

et déterminer $P \in GL_3(\mathbb{R})$ telle que

$$T = P^{-1}AP.$$

iii) Calculer A^n , $n \in \mathbb{N}$.

Exercice 72. \heartsuit i) Montrer que si λ est valeur propre de A, alors λ^n est valeur propre de A^n , $n \in \mathbb{N}$.

- ii) Déterminer toutes les valeurs propres d'une matrice $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^n = I$, pour un certain $n \in \mathbb{N}^*$.
- iii) Montrer que si A est une matrice inversible, A et A^{-1} ont mêmes vecteurs propres. Donner les valeurs propres de A^{-1} en fonction de celles de A.

Exercice 73. \spadesuit On considère r_{θ} la rotation directe dans \mathbb{R}^3 d'axe (Oz) et d'angle $\theta \neq k\pi$ $(k \in \mathbb{Z})$. Montrer que r_{θ} n'admet qu'un seul vecteur propre.

Exercice 74. \heartsuit Soient x, y et z trois fonctions de \mathbb{R} dans \mathbb{R} , dérivables sur \mathbb{R} . On veut résoudre le système différentiel suivant

(1)
$$\begin{cases} x' = 7x - 3y - 4z \\ y' = -4x + 6y + 4z \\ z' = 5x - 3y - 2x \end{cases}$$

i) Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $X' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$. Calculer $A \in \mathcal{M}_3(\mathbb{R})$ telle que

$$X' = AX$$

ii) Diagonaliser A et déterminer P telle que $P^{-1}AP$ soit égale à la matrice diagonale

$$D = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{array}\right).$$

iii) Résoudre le système d'équations différentielles (1).

Exercice 75. \spadesuit Soit f l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^4 telle que

$$f(x, y, z, t) = (x + z, 2y, x + 2z - t, x + 2z) .$$

- i) Ecrire la matrice A de f dans la base canonique.
- ii) Calculer P, le polynôme caractéristique de A. Montrer que 1 est racine de P et déterminer sa multiplicité. Montrer que A admet une deuxième valeur propre λ_2 qu'on calculera.
- iii) Déterminer les sous-espaces propres de f. Montrer que A n'est pas diagonalisable.
- iv) Calculer $(A-I)^2$ et $(A-I)^3$. Donner une base de $\operatorname{Ker}((A-I)^3)$, et trouver $v \in \operatorname{Ker}((A-I)^3)$ tel que $v \notin \operatorname{Ker}((A-I)^2)$.
- v) Soient $v_1 = (A I)^2 v$, $v_2 = (A I)v$ et $v_3 = v$. Donnez les coordonnées de v_1 , v_2 et v_3 dans la base canonique. Exprimer $(A I)v_1$, $(A I)v_2$ et $(A I)v_3$ en fonction de v_1 , v_2 et v_3 . En déduire l'expression de Av_1 , Av_2 et Av_3 en fonction de v_1 , v_2 et v_3 .
- vi) Soit v_4 un vecteur propre associé à la valeur propre λ_2 . Montrer que (v_1, v_2, v_3, v_4) est une base de \mathbb{R}^4 . Montrer que la matrice A' de f dans la base (v_1, v_2, v_3, v_4) est une matrice de Jordan.

5. Espaces Euclidiens.

Exercice 76. \heartsuit Soient E un espace euclidien et $(x,y) \in E^2$. Calculer

$$||||y||^2x - (x|y)y||^2$$

et retrouver ainsi l'inégalité de Cauchy-Schwarz, ainsi que l'étude du cas d'égalité dans cette inégalité.

Exercice 77. \spadesuit Une autre preuve de l'inégalité de Cauchy-Schwarz dans \mathbb{R}^n .

Soient $n \in \mathbb{N}^*$, $a = (a_1, \dots, a_n) \in \mathbb{R}^n$, $b = (b_1, \dots, b_n) \in \mathbb{R}^n$; On pose $A = \sum_{i=1}^n a_i^2$, $B = \sum_{i=1}^n b_i^2$ et $C = \sum_{i=1}^n a_i b_i$. Montrer que $C^2 \leq AB$.

1ère démonstration: L'inégalité est évidente si B=0. Dans le cas où $B\neq 0$, calculer

$$\sum_{j=1}^{n} (Ba_j - Cb_j)^2$$

2ème démonstration: Montrer que

$$AB - C^2 = \sum_{1 \le i \le j \le n} (a_i b_j - a_j b_i)^2$$

En déduire le cas d'égalité dans l'inégalité de Cauchy-Schwarz.

Exercice 78. © Etudier le cas de l'égalité dans l'inégalité de Minkowski (inégalité du triangle).

Exercice 79. \heartsuit Soient $n \in \mathbb{N}^*$, $((a_1, \ldots, a_n), (b_1, \ldots, b_n), (c_1, \ldots, c_n)) \in (\mathbb{R}^n_+)^3$. Montrer

$$\left(\sum_{k=1}^n a_k b_k c_k\right)^2 \le \left(\sum_{k=1}^n a_k^2 c_k\right) \left(\sum_{k=1}^n b_k^2 c_k\right)$$

Exercice 80. \clubsuit Soit $n \in \mathbb{N}^*$. Etablir

$$\sum_{p=1}^{n} p\sqrt{p} \le \frac{n(n+1)\sqrt{2n+1}}{2\sqrt{3}}$$

Exercice 81. \spadesuit Soit $n \in \mathbb{N}$, $n \geq 2$. Etablir

$$\sum_{p=1}^{n-1} \frac{p}{(n-p)^2} \ge \frac{2}{n(n-1)} \left(\sum_{p=1}^{n-1} \frac{p}{n-p} \right)^2$$

Exercice 82. \spadesuit Soient E un espace euclidien et $(d, \delta) \in \mathbb{R}_+^* \times \mathbb{R}_+$ tel que $\delta \leq d$. On considère B_1 la boule fermée de centre 0 et de rayon d

$$B_1 = B'_E(0,d) = \{x \in E ; ||x|| \le d\},$$

 B_2 la boule fermée de centre 0 et de rayon $d+\delta$ et A une partie convexe de E telle que

$$A \subset B_2 \setminus B_1$$
.

Etablir l'inégalité

diam(A) :=
$$\sup_{(x,y)\in A^2} ||x - y|| \le 2\sqrt{3\delta d}$$

 $(\operatorname{diam}(A) \text{ est le diamètre de } A).$

Rappel: Une partie A d'un espace vectoriel réel est dite convexe si

$$\forall x \in A, \forall y \in A, \forall \lambda \in [0, 1], \ \lambda x + (1 - \lambda)y \in A.$$

Exercice 83. \spadesuit Soient E un espace vectoriel euclidien, $n \in \mathbb{N}^*$ et $(x_1, \dots, x_n) \in E^n$ i) Vérifier

$$\sum_{1 \le i \le j \le n} \|x_i - x_j\|^2 = n \left(\sum_{i=1}^n \|x_i\|^2 \right) - \|\sum_{i=1}^n x_i\|^2$$

ii) On suppose ici que $\forall (i,j) \in \{1,\ldots,n\}^2, \ (i \neq j \Rightarrow ||x_i - x_j|| \geq 2)$. Soit

$$B = B'_E(a, r) = \{x \in E \; ; \; ||x - a|| \le r\}$$

une boule fermée dans E de centre $a \in E$ et de rayon $r \geq 0$, contenant x_1, x_2, \ldots, x_n . Montrer que le rayon r de B satisfait la relation

$$\sqrt{\frac{2(n-1)}{n}} \le r.$$

Exercice 84. \heartsuit Soient \mathcal{C}_4 la base canonique de \mathbb{R}^4 euclidien usuel, et

$$F = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4; \sum_{i=1}^4 x_i = 0 \text{ et } x_1 + x_3 = x_2 + x_4\}$$

Former les matrices, relativement à C_4 , de la projection orthogonale sur F et des symétries orthogonales par rapport à F et F^{\perp} .

Exercice 85. \heartsuit Dans \mathbb{R}^4 euclidien usuel, on considère

$$v_1 = (1, 2, -1, 1), \quad v_2 = (0, 3, 1, -1), \quad F = \text{Vect}(v_1, v_2).$$

Déterminer une base orthogonale et un système d'équations de F^{\perp} .

Exercice 86. \heartsuit Dans \mathbb{R}^4 euclidien usuel, on considère

$$v_1 = (2, 1, -1, 1), \quad v_2 = (3, 1, 1, 0), \quad F = Vect(v_1, v_2), \quad \text{et} \quad v = (2, 3, -1, -4).$$

Quelle est la projection orthogonale de V sur F? Quelle est la distance de V à F?

Exercice 87. \clubsuit Soit \mathcal{C}_3 la base canonique de \mathbb{R}^3 euclidien usuel, et soit F un sous-espace vectoriel de \mathbb{R}^3 . Déterminer les matrices relativement à \mathcal{C}_3 de la symétrie orthogonale par rapport à F, dans les cas suivants.

- i) $F = \text{Vect}(\{e_1, e_2\}) = \{(x_1, x_2, x_3) \in \mathbb{R}^3; \ x_3 = 0\}.$ ii) $F = \{(x_1, x_2, x_3) \in \mathbb{R}^3; \ x_1 + 2x_2 + x_3 = 0\}.$ iii) $F = \{(x_1, x_2, x_3) \in \mathbb{R}^3; \ \sum_{i=1}^3 a_i x_i = 0\}$ où $(a_1, a_2, a_3) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}$ est donné.

Exercice 88. \heartsuit Soit $E = \mathbb{R}_2[x]$ le \mathbb{R} -espace vectoriel des fonctions polynomiales de degré au plus 2. Les formes bilinéaires symétriques suivantes sont-elles définies? positives?

- i) $\varphi(P,Q) = P(0)Q(0)$.
- ii) $\varphi(P,Q) = P(0)Q(0) + P'(0)Q'(0) + P''(0)Q''(0)$. iii) $\varphi(P,Q) = \int_0^1 P'(x)Q'(x)dx$ iv) $\varphi(P,Q) = \int_{-1}^{+1} (1-x^2)P(x)Q(x)dx$

Exercice 89. \heartsuit On considère $E = \mathbb{R}^3$, muni de sa base canonique $\mathcal{C}_3 = (e_1, e_2, e_3)$ et la forme bilinéaire symétrique φ définie sur E par

$$\varphi(x,y) = \varphi((x_1, x_2, x_3), (y_1, y_2, y_3))
= 4x_1y_1 + 5x_2y_2 + 9x_3y_3 + 4(x_1y_2 + x_2y_1) + 6(x_2y_3 + x_3y_2) + 4(x_1y_3 + x_3y_1)$$

- i) Montrer que φ est un produit scalaire sur E
- ii) A l'aide du procédé d'orthogonalisation de Schmidt, construire une base $\mathcal B$ orthogonale pour φ , puis en déduire une base \mathcal{B}' orthonormale pour φ .
 - iii) Quelles sont les matrices de φ dans les bases \mathcal{C}_3 , \mathcal{B} et \mathcal{B}' .

Exercice 90. \clubsuit Mêmes questions que dans l'exercice 89 avec $E = \mathbb{R}_2[x], \mathcal{C}_3 = (e_0, e_1, e_2)$ (où $e_i(x) = x^i, i \in \{1, 2, 3\}$) et

$$\varphi(P,Q) = \int_0^1 P(x)Q(x)dx$$

Exercice 91. \heartsuit Pour $n \in \mathbb{N}^*$, soit $E = \mathcal{M}_n(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices carrées réelles d'ordre n muni du produit scalaire défini par

$$(A|B) = \operatorname{Tr}({}^{t}AB)$$

- i) Vérifier que l'application (.|.) est un produit scalaire sur E.
- ii) Soit $A = (a_{ij}) \in E$. Exprimer ||A|| à l'aide des a_{ij} .
- iii) On considère les sous-espaces vectoriels suivants de E

$$F = S_n(\mathbb{R}) = \{ A \in E; \ {}^tA = A \} \text{ et } G = A_n(\mathbb{R}) = \{ A \in E; \ {}^tA = -A \}.$$

Déterminer F^{\perp} et G^{\perp} .

- iv) Démontrer que E est somme directe orthogonale de F et G: $E=F\oplus G$ et F et G sont orthogonaux.
- v) Soit $A \in E$. Quelles sont les projections orthogonales de A sur les sous-espaces vectoriels F et G? Calculer

$$\alpha = \inf\{\|A - M\|; M \in F\}$$
 (distance de A à F)

et

$$\beta = \inf\{||A - M||; M \in G\}$$
 (distance de A à G)

Exercice 92. \spadesuit On munit \mathbb{R}^n de la structure euclidienne canonique avec $(x|y) = \sum_{i=1}^n x_i y_i$. La base canonique $\mathcal{C}_n = (e_i)_{1 \leq i \leq n}$ est donc orthonormale. Soit $a = (a_i)_{1 \leq i \leq n} \in \mathbb{R}^n$, $a \neq 0$ et u la forme linéaire sur \mathbb{R}^n définie par

$$u(x) = \sum_{i=1}^{n} a_i x_i.$$

i) Montrer que

$$\forall x \in \mathbb{R}^n, |u(x)| \le ||a|| ||x||$$

et

$$\sup_{\|x\|=1} |u(x)| = \|a\|$$

- ii) Exprimer $H = \ker(u)$ à l'aide de a. Que dire de H^{\perp} ?
- iii) Soient $x \in \mathbb{R}^n$ et $d = d(x, H) = \inf_{y \in H} ||x y||$, la distance de x à H. Exprimer d à l'aide de a et x. Quelle formule de l'enseignement secondaire a-t-on retrouvée?

Exercice 93. A Matrice de Householder

On munit le \mathbb{R} -espace vectoriel $\mathcal{M}_{n,1}(\mathbb{R})$ de sa structure euclidienne canonique. Soient $V \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ et $H = V^{\perp}$ l'hyperplan orthogonal à V.

Soit p la projection orthogonale sur H et P sa matrice dans la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$; soit s la symétrie orthogonale par rapport à H (appelée réflexion) et S sa matrice dans la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$.

i) Montrer que

$$P = I_n - \frac{1}{{}^t\!V\,V}V^t\!V.$$

ii) Montrer que

$$S = I_n - \frac{2}{{}^t\!V\,V}V^t\!V.$$

(S est appelée matrice de Householder)

Exercice 94. Soient E un espace euclidien, $p \in \mathcal{L}(E)$ un projecteur de E.

- i) Rappeler les propriétés de p, projecteur de E.
- ii) Etablir l'équivalence des assertions suivantes:
 - 1. Im $p \perp \ker p$ (on dit alors que p est un projecteur orthogonal de E).
 - 2. $\forall x \in E, ||p(x)|| \le ||x||$.

Exercice 95. \spadesuit Soient E un espace euclidien, $n \in \mathbb{N}^*$ et (e_1, e_2, \dots, e_n) un système de n vecteurs unitaires (i.e., pour tout i, $||e_i|| = 1$), tel que

$$\forall x \in E, \ ||x||^2 = \sum_{i=1}^n (x|e_i)^2.$$

Montrer que (e_1, \ldots, e_n) est une base de E.

Indication: Montrer d'abord que (e_1, \ldots, e_n) est une famille orthonormale, puis considérer $F = \text{Vect}(\{e_1, \ldots, e_n\})$ et la projection orthogonale sur F.

Exercice 96. \heartsuit On considère $E = \mathbb{R}_3[x]$ le \mathbb{R} -espace vectoriel des fonctions polynomiales de degré au plus 3, muni du produit scalaire

$$(P|Q) = \int_0^1 P(x)Q(x)\mathrm{d}x$$

(c.f. 90 ci-dessus), F le sous-espace vectoriel de E: $F = \mathbb{R}_2[x]$ et $\mathcal{C}_3 = (e_0, e_1, e_2, e_3)$ la base canonique de E.

Calculer la distance dans E de e_3 à F: $d(e_3, F)$. En déduire

$$m = \inf_{(a,b,c) \in \mathbb{R}^3} \left(\int_0^1 [x^3 - ax^2 - bx - c]^2 dx \right).$$

Exercice 97. Calculer

$$m = \inf_{(a,b) \in \mathbb{R}^2} \left(\int_0^1 x^2 [\ln x - ax - b]^2 dx \right).$$

Procéder comme dans l'exercice 96 en introduisant le \mathbb{R} -espace vectoriel $E = \text{Vect}(\{e_0, e_1, f\})$, sous-espace vectoriel de l'espace vectoriel $C([0, 1]; \mathbb{R})$, où pour tout $x \in [0, 1]$, on a

$$e_0(x) = 1$$
, $e_1(x) = x$, et $f(x) = \begin{cases} x \ln x, & \text{si } x \in]0, 1] \\ 0, & \text{si } x = 0 \end{cases}$

Exercice 98. \spadesuit Soient E, F deux espace euclidiens et $f: E \to F$ une application telle que $f(0_E) = 0_F$ et

$$(\forall (x,y) \in E^2) (\|f(x) - f(y)\|_F = \|x - y\|_E),$$

autrement dit, f est une application isométrique de E dans F: "f conserve les distances".

i) Utiliser les formules usuelles dans les espaces euclidiens pour montrer que f conserve le produit scalaire:

$$(\forall (x,y) \in E^2) \ (\ (f(x)|f(y))_F = (x|y)_E).$$

- ii) Montrer que f est \mathbb{R} -linéaire et injective.
- iii) Que peut-on dire de plus si E = F?
- iv) On ne suppose plus que f(0) = 0. Que peut-on dire à la place du résultat obtenu en ii)?

6. Matrices symétriques - Matrices orthogonales - Adjoint.

Exercice 99. \heartsuit Dans \mathbb{R}^3 euclidien usuel, on considère le vecteur unitaire $u=(\alpha,\beta,\gamma)$ (α^2+ $\beta^2 + \gamma^2 = 1$). Soient $\Delta = \text{Vect}(\{u\}) = \mathbb{R}u$ la droite (vectorielle) engendrée par u et $P = \Delta^{\perp}$ le plan (vectoriel) orthogonal à u. Former les matrices relativement à \mathcal{C}_3 (base canonique de \mathbb{R}^3) des projections orthogonales sur Δ et P et des symétries orthogonales par rapport à Δ et P.

Parmi les matrices obtenues, lesquelles sont orthogonales, symétriques? Pourquoi?

Exercice 100. \heartsuit Dans \mathbb{R}^4 euclidien usuel, on considère le sous-espace vectoriel F d'équations

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \end{cases}$$

Former les matrices, relativement à la base canonique C_4 , des projections orthogonales sur F et F^{\perp} et des symétries orthogonales par rapport à F et F^{\perp} . Pour $x \in \mathbb{R}^4$, exprimer d(x, F)(distance de x à F). Parmi les matrices obtenues, lesquelles sont orthogonales, symétriques? Pourquoi?

Exercice 101. \spadesuit On munit \mathbb{R}^n de sa structure euclidienne canonique; soit $\mathcal{C}_n = (e_i)_{1 \leq i \leq n}$ sa base canonique et $A = (a_{ij})_{1 \leq i,j \leq n}$ une matrice orthogonale d'ordre n. On pose, pour tout $j \in \{1, \ldots, n\}$:

$$v_j = (\alpha_{1j}, \alpha_{2j}, \dots, \alpha_{nj}) = \sum_{i=1}^n a_{ij} e_i$$
 et $u = (1, \dots, 1) = \sum_{i=1}^n e_i$.

- i) Exprimer la somme $\sum_{i,j=1}^{n} a_{ij}$ à l'aide des vecteurs v_j et du vecteur u.
- ii) Etablir l'inégalité

$$\left| \sum_{i,j=1}^{n} a_{ij} \right| \le n.$$

iii) Dans quel cas a-t-on égalité dans l'inégalité (2) précédente? Donner un exemple d'une matrice A orthogonale et vérifiant l'égalité $|\sum_{i,j=1}^n a_{ij}| = n$.

Exercice 102. \clubsuit Soient $A \in \mathcal{M}_n(\mathbb{R})$ et C_1, C_2, \ldots, C_n les colonnes de A. Etablir l'équivalence des assertions suivantes:

- 1. $A \in O_n(\mathbb{R})$ 2. $\sum_{j=1}^n C_j {}^tC_j = I_n$

Exercice 103. \spadesuit Etude de $O_2(\mathbb{R})$

i) Etablir

$$O_2(\mathbb{R}) = \{ R_\theta; \ \theta \in \mathbb{R} \} \cup \{ S_\varphi; \ \varphi \in \mathbb{R} \}$$

οù

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \quad \text{et} \quad S_{\varphi} = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}$$

- géométriquement les éléments de $SO_2(\mathbb{R})$ dans \mathbb{R}^2 euclidien usuel.
- iii) Soit $\varphi \in \mathbb{R}$; montrer que $S_{\varphi}^2 = I_2$, $\det(S_{\varphi}) = -1$ et $S_{\varphi} = R_{\varphi} S_0$. Interpréter géométriquement

Indication: S_{φ} est la matrice dans la base canonique de \mathbb{R}^2 d'une symétrie orthogonale (une réflexion) par rapport à une droite de \mathbb{R}^2 .

iv) Calculer $R_{\theta}R_{\theta'}$, $R_{\theta}S_{\varphi}$, $S_{\varphi}R_{\theta}$, $S_{\varphi}S_{\varphi'}$ pour θ , θ' , φ , φ' dans \mathbb{R} .

Exercice 104. \heartsuit Soient $(a, b, c) \in (\mathbb{R}^*)^3$ et

$$A = -\frac{2}{3} \begin{pmatrix} -1/2 & b/a & c/a \\ a/b & -1/2 & c/b \\ a/c & b/c & -1/2 \end{pmatrix}$$

Montrer que

$$A \in O_3(\mathbb{R}) \quad \Leftrightarrow \quad a^2 = b^2 = c^2.$$

Exercice 105. \spadesuit Soient $(a,b,c) \in \mathbb{R}^3$ et

$$A = \begin{pmatrix} 1/\sqrt{2} & 0 & a \\ 1/2 & -1/\sqrt{2} & b \\ 1/2 & 1/\sqrt{2} & c \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

Quelle est la condition nécessaire et suffisante sur (a, b, c) pour que $A \in O_3(\mathbb{R})$?

Exercice 106. \heartsuit Soit

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

Trouver $P \in O_3(\mathbb{R})$ telle que $P^{-1}AP$ soit diagonal

Exercice 107. \spadesuit Même question que dans l'exercice 106 avec

$$B = \begin{pmatrix} 13 & -2 & -3 \\ -2 & 10 & -6 \\ -3 & -6 & 5 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

Exercice 108. \heartsuit Réduire dans le groupe orthogonal de \mathbb{R}^3 euclidien usuel les formes quadra-

$$q_1(x) = q_1(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + x_3^2 - 2x_2x_3 + 2x_1x_3$$

$$q_2(x) = q_2(x_1, x_2, x_3) = 151x_1^2 - 119x_2^2 + 137x_3^2 - 192x_2x_3 + 48x_1x_3 + 144x_1x_2$$

Exercice 109. \clubsuit Soit $S_n(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices symétriques réelles d'ordre net $A \in S_n(\mathbb{R})$. On dit que A est positive (respectivement définie positive) si

$$(\forall X \in \mathcal{M}_{n,1}(\mathbb{R})) \ (^t X A X \ge 0),$$

(respectivement $(\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}) \ (^t X A X > 0)).$

On note $S_n^+(\mathbb{R})$ (respectivement $S_n^{++}(\mathbb{R})$) l'ensemble des matrices symétriques réelles d'ordre n positives (respectivement définies positives). Etablir à l'aide d'une diagonalisation les équivalences

- 1. $A \in S_n^+(\mathbb{R}) \Leftrightarrow \operatorname{Sp}(A) \subset \mathbb{R}_+$ 2. $A \in S_n^{++}(\mathbb{R}) \Leftrightarrow \operatorname{Sp}(A) \subset \mathbb{R}_+^*$

Exercice 110. \clubsuit Soient $A \in \mathcal{M}_n(\mathbb{R})$, $S = {}^t AA$.

- i) Montrer: $S \in S_n^+(\mathbb{R})$. ii) Etablir: $S \in S_n^{++}(\mathbb{R}) \Leftrightarrow A \in GL_n(\mathbb{R})$.

Exercice 111. \spadesuit Soient $(a,b) \in \mathbb{R}^2$ tel que $a < b, f_1, \ldots, f_n : [a,b] \to \mathbb{R}$ continues, A = $(a_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$ définie par

$$\forall i, j, \ a_{ij} = \int_a^b f_i(t) f_j(t) dt.$$

- i) Montrer que $A \in S_n^+(\mathbb{R})$ (A est symétrique positive) ii) Montrer que $A \in S_n^{++}(\mathbb{R})$ (A est symétrique définie positive) si et seulement si (f_1, \ldots, f_n) est libre.

Exercice 112. Application de l'exercice 111: Matrices de Hilbert

Pour $n \in \mathbb{N}^*$, on note

$$H_n = \left(\frac{1}{i+j-1}\right)_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R}).$$

Montrer: $H_n \in S_n^{++}(\mathbb{R})$.

Indication. Remarquez: $\forall k \in \mathbb{N}, \ \frac{1}{k+1} = \int_0^1 t^k dt$.

Exercice 113. \spadesuit On désigne par $T_{n,s}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices triangulaires supérieures réelles d'ordre n.

i) Etablir la propriété:

$$\forall A \in GL_n(\mathbb{R}), \ \exists (\Omega, T) \in O_n(\mathbb{R}) \times T_{n,s}(\mathbb{R}), \ A = \Omega T.$$

Indication: Utiliser \mathbb{R}^n euclidien et sa base canonique \mathcal{C}_n . Soit \mathcal{B} la base de \mathbb{R}^n définie par: A est la matrice de passage de C_n à B. Appliquer alors le procédé d'orthonormalisation de Schmidt à cette base \mathcal{B} afin d'obtenir une base orthonormale \mathcal{C} dans \mathbb{R}^n usuel

ii) Complément: Si on suppose de plus que les éléments diagonaux de T sont dans \mathbb{R}_+^* , alors le couple (Ω, T) est unique.

Application: Soit $A = (a_{ij}) \in GL_n(\mathbb{R})$, on a

$$|{
m det} A| \leq \left(\prod_{j=1}^n \left(\sum_{i=1}^n a_{ij}^2\right)\right)^{\frac{1}{2}} \quad ({
m in\'egalit\'e d'Hadamard})$$

Dans quel cas a-t-on égalité dans l'inégalité précédente?

Exercice 114. \heartsuit Soient E un espace euclidien et $f,g: E \to E$ deux applications telles que

$$(\forall (x,y) \in E^2) ((x|f(y)) = (g(x)|y)).$$

Montrer que f et g sont des endomorphismes de E.

Exercice 115. \spadesuit Soient E un espace euclidien de dimension n, u un endomorphisme de E, $\mathcal{B} = (e_j)_{1 \leq j \leq n}$ et $\mathcal{C} = (f_i)_{1 \leq i \leq n}$ deux bases orthonormales de E. On pose

$$\varphi(\mathcal{B}, \mathcal{C}) = \sum_{1 \leq i, j \leq n} (u(e_j)|f_i)^2.$$

- i) Montrer que $\varphi(\mathcal{B}, \mathcal{C})$ est indépendant du choix des bases orthonormales \mathcal{B} et \mathcal{C} . Indication: Introduire $A = \text{Mat}(u; \mathcal{B}, \mathcal{C})$ et évaluer $\varphi(\mathcal{B}, \mathcal{C})$ à l'aide de A. Effectuer ensuite des changements de bases.
 - ii) Exprimer $\varphi(\mathcal{B}, \mathcal{C})$ à l'aide du spectre de la matrice symétrique tAA .
 - iii) Exprimer les résultats de i) et ii) à l'aide de u^*u où u^* désigne l'adjoint de u.
 - iv) Examiner les cas particuliers: u symétrique et u orthogonal.

Exercice 116. \clubsuit Soit $E = \mathcal{M}_{n,p}(\mathbb{R})$. On définit un produit scalaire sur E par

$$\forall (X,Y) \in E, \ (X|Y| = \operatorname{tr}({}^t XY).$$

i) Pour A fixée dans E, soit

$$\varphi_A: \begin{array}{c} E \to E \\ X \mapsto A^t X A \end{array}$$

Montrer que φ_A est un endomorphisme symétrique de $E: \varphi_A \in \mathcal{S}(E)$.

ii) Pour $A \in \mathcal{M}_n(\mathbb{R})$ et $B \in \mathcal{M}_p(\mathbb{R})$ fixées, soit

$$\psi_{A,B}: \begin{array}{c} E \to E \\ X \mapsto AX - XB \end{array}$$

Déterminer l'adjoint $\psi_{A,B}^*$ de $\psi_{A,B}$.

Exercice 117. \heartsuit Soit f l'endomorphisme de \mathbb{R}^2 défini par sa matrice dans la base canonique \mathcal{C}_2 de \mathbb{R}^2 :

$$A = \operatorname{Mat}(f; \mathcal{C}_2) = \begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix}$$

- i) Déterminer f^* et $\operatorname{Mat}(f^*; \mathcal{C}_2)$ quand \mathbb{R}^2 est muni de sa structure euclidienne usuelle. Justifier tous les détails de la démonstration.
 - ii) Même question lorsque \mathbb{R}^2 est muni du produit scalaire suivant:

$$\varphi(x,y) = \langle x, y \rangle = x_1^2 + x_1 x_2 + x_2^2.$$

7. Espaces hermitiens. Déterminants

Exercice 118. \heartsuit Soit $A = (a_{ij})_{i,j} = 1, \ldots, n \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne. Montrer que la somme des carrés de ses valeurs propres λ_i est égale à $\sum_{i,j=1}^n |a_{ij}|^2$.

Exercice 119.
$$\heartsuit$$
 Soit $A = \begin{pmatrix} 1 & 1-i & 0 \\ 1+i & 1 & i \\ 0 & -i & 1 \end{pmatrix}$.

Diagonaliser A dans le groupe unitaire $U_3(\mathbb{C})$.

Exercice 120. \heartsuit Soit E un espace hermitien; un endomorphisme f de E est dit normal si $f \circ f^* = f^* \circ f$. Montrer que dans ce cas:

- i) $\ker f = \ker f^*$.
- ii) $\lambda \in \mathbb{C}$ est valeur propre de f si et seulement si $\overline{\lambda}$ est valeur propre de f^* .
- iii) Si $E_{\lambda}(f)$ est un sous-espace propre de f, $(E_{\lambda}(f))^{\perp}$ est stable par f et f^* .

Exercice 121. \heartsuit Soit E un espace hermitien; un endomorphisme f de E est dit unitaire si $f \circ f^* = f^* \circ f = \mathrm{Id}_E$. Soit f un tel endomorphisme; vérifier que f est un automorphisme et exprimer f^{-1} . On pose $g = \mathrm{Id}_E - f$.

- i) Montrer que $\ker g = (\operatorname{Im} g)^{\perp}$.
- ii) En déduire que $E = \operatorname{Im} g \oplus \ker g$.

Exercice 122.
$$\clubsuit$$
 Soit $D(a,b,c) = \begin{vmatrix} -2a & a+b & a+c \\ a+b & -2b & b+c \\ a+c & c+b & -2c \end{vmatrix}$.

- i) Calculer D(a, a, a) et D(a, b, b).
- ii) Cas général: Considérer le polynôme D(x,b,c). Montrer que -b et -c en sont racines. Quel est son terme de plus haut degré? Conclusion?

Exercice 123. V Factoriser le polynôme

$$P(x) = \begin{vmatrix} x & a & b & c \\ a & x & c & b \\ b & c & x & a \\ c & b & a & x \end{vmatrix}.$$

Exercice 124. \heartsuit Soient

$$M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \quad (a, b, c \in \mathbb{C}) \quad \text{et} \quad U = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix}$$

Soit $f(z) = a + bz + cz^2$.

i) Montrer que

$$MU = \begin{pmatrix} f(1) & f(j) & f(j^2) \\ f(1) & jf(j) & j^2f(j^2) \\ f(1) & j^2f(j) & jf(j^2) \end{pmatrix}$$

ii) En déduire que

$$\det M = f(1)f(j)f(j^2)$$

puis l'identité $a^3 + b^3 + c^3 - 3abc = (a + b + c)(a + bj + cj^2)(a + bj^2 + cj)$. En déduire que si $(a, b, c) \in \mathbb{R}^3_+$ on a $a^3 + b^3 + c^3 \ge 3abc$.

Exercice 125. \spadesuit Soit (A, B, C) un triangle de côtés a = BC, b = AC et c = AB et d'angles \hat{A} , \hat{B} et \hat{C} issus respectivement de A, B et C. Sachant qu'il existe la relation suivante

$$a = b\cos\hat{C} + c\cos\hat{B}, \quad b = c\cos\hat{A} + a\cos\hat{C}, \quad c = a\cos\hat{B} + b\cos\hat{A},$$

trouver une relation liant les cosinus des angles \hat{A} , \hat{B} et \hat{C} .

Exercice 126. \heartsuit Calculer

$$\begin{vmatrix} 1 & 1 & \dots & \dots & 1 \\ b_1 & a_1 & \dots & \dots & a_1 \\ b_1 & b_2 & a_2 & \dots & \dots & a_2 \\ \dots & & & & & \\ b_1 & b_2 & \dots & \dots & b_n & a_n \end{vmatrix}$$

Exercice 127. & Calculer

$$\begin{vmatrix} a_n & a_{n-1} & \dots & \dots & \dots & a_0 \\ -1 & x & 0 & \dots & \dots & 0 \\ 0 & -1 & x & 0 & \dots & \dots & 0 \\ 0 & 0 & -1 & x & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \end{vmatrix}$$

Exercice 128. A Déterminant de Vandermonde.

Montrer que

$$\begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

en remarquant que c'est un polynôme en x_n de degré (n-1) dont $x_1, x_2, \dots x_{n-1}$ sont les racines.

Exercice 129. O Calculer le déterminant de la matrice tridiagonale suivante

$$\begin{pmatrix}
1 & 1 & 0 & 0 & \dots & \dots & 0 \\
1 & 1 & 1 & 0 & \dots & \dots & \dots & 0 \\
0 & 1 & 1 & 1 & 0 & \dots & \dots & 0 \\
0 & 0 & 1 & 1 & \dots & \dots & \dots & 0 \\
0 & 0 & \dots & \dots & \dots & 1 & 1 & 1 \\
0 & \dots & \dots & \dots & \dots & 0 & 1 & 1
\end{pmatrix}$$

Exercice 130. A Calculer le déterminant de la matrice tridiagonale suivante

$$\begin{pmatrix}
2 & 1 & 0 & \dots & \dots & 0 \\
3 & 2 & 1 & 0 & \dots & 0 \\
0 & 3 & 2 & 1 & \dots & 0 \\
\dots & \dots & \dots & \dots & \dots & \dots \\
0 & \dots & 0 & 3 & 2 & 1 \\
0 & \dots & 0 & 3 & 2
\end{pmatrix}$$

Exercice 131. \clubsuit i) Pour $(n,p) \in \mathbb{N}^2$, calculer

$$\Delta_{n,p} = \begin{vmatrix} 1 & 0 & 0 & \dots & \dots & 0 & n \\ 1 & C_2^1 & 0 & \dots & \dots & 0 & n^2 \\ 1 & C_3^1 & C_3^2 & 0 & \dots & 0 & n^3 \\ 1 & C_4^1 & C_4^2 & \dots & \dots & 0 & n^4 \\ 1 & \dots & \dots & \dots & \dots & C_p^{p-1} & n^p \\ 1 & C_{p+1}^1 & C_{p+1}^2 & \dots & \dots & C_{p+1}^{p-1} & n^{p+1} \end{vmatrix}$$

Indication: calculer $\Delta_{n+1,p} - \Delta_{n,p}$ ii) En déduire les valeurs de $\sum_{1}^{n} k$, $\sum_{1}^{n} k^{2}$ et $\sum_{1}^{n} k^{3}$, où $n \in \mathbb{N}^{*}$.