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Eigenfunction hybridization (tunnelling amplitude vs. energy gaps)

Reminder from QM 101: Two-level system H =

(
E1 τ
τ∗ E2

)

Energy gap: ∆E := E1 − E2 Tunneling amplitude: τ .

I Case |∆E | � |τ |: Localization

ψ1 ≈ (1, 0) , ψ2 ≈ (0, 1) .

I Case |∆E | � |τ |: Hybridized eigenfunctions

ψ1 ≈
1√
2

(1, 1) , ψ2 ≈
1√
2

(1, −1) .
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Quasimodes & their tunnelling amplitude
Definition:

1. A quasi-mode (qm) with discrepancy d for a self-adjoint operator H
is a pair (E , ψ) s.t.

‖(H − E)ψ‖ ≤ d‖ψ‖ .

2. The pairwise tunnelling amplitude, among orthogonal qm’s
of energy close to E may be defined as τjk (E) in

Pjk (H − E)−1Pjk =

[
ej + σjj (E) τjk (E)
τkj (E) ek + σkk (E)

]−1

.

(the “Schur complement” representation).

Seems reasonable to expect:

If the typical gap size for quasi-modes is ∆(E), the condition for resonant
delocalization at energies E + Θ(∆E) is:

∆(E) ≤ |τjk (E)| .

Question: how to deal with many co-resonating modes?
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Example: Schrödinger operator on the complete graph (of M sites)

HM = −|ϕ0〉〈ϕ0|+ κM V

with:
I 〈ϕ0| = (1, 1, . . . , 1)/

√
M ,

I V1,V2, . . .VM iid standard Gaussian rv’s, i.e.

%(v) =
1√
2π

e−v2/2,

I κM := λ
/√

2 log M.

Remarks:

I Choice of (κM ) motivated by: max{V1, ...,VM}
inProb

=
√

2 log M + o(1) .

I The spectrum of H for M →∞ :

σ(HM ) −→ [−λ, λ] ∪ {−1, 0} (on the ‘macroscopic scale’) .

I Eigenvalues interlace with the values of KMV
I Studied earlier by Bogachev and Molchanov (‘89), and Ossipov (‘13) -

both works focused on localization.
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Two phase transitions for HM = −|ϕ0〉〈ϕ0|+ κM V

Quasi-modes: |ϕ0〉 (extended), and |δj〉 j = 1, ...,M (localized).

-1 0

-λ

1. A transition at the spectral edge (1st -order), at λ = 1 :

λ < 1 : E0 = −1 + o(1) , Ψ0 ≈ ϕ0 (the ground state is extended)

λ > 1 : E0 = −λ+ o(1) , Ψ0 ≈ δargmin(V ) (the ground state is localized

except for ‘avoided crossings’)

2. Emergence of a band of semi-delocalized states:

at energies near E = −1, for λ >
√

2 .

A similar band is found also near E = 0 for all λ > 0.
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The characteristic equation

Proposition
The eigenvalues of HM intertwine with the values of κV .
The spectrum of HM consists of the collection of energies E for which

FM (E) :=
1
M

M∑
x=1

1
κMV (x)− E

= 1 , (1)

and the corresponding eigenfunctions are given by:

ψE (x) =
Const .

κMV (x)− E
. (2)

Furthermore: The eigenvalues of HM intertwine with the values of κV .

Proof: allows to deduce, by standard arguments, that for any z ∈ C\R:

1
HM − z

=
1

κMV − z
+ [1− FM (z)]−1 1

κMV − z
|ϕ0〉〈ϕ0|

1
κMV − z

(3)

and, in particular, 〈ϕ0 , (HM − z)−1ϕ0〉 = (FM (z)−1 − 1)−1. The spectrum
and eigenfunctions of HM are then read from the poles and residues of its
resolvent.
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The scaling limit

Zooming onto scaling windows centered at a sequence of energies EM with:

lim
M→∞

EM = E ∈ [−λ, λ], and |EM − E| ≤ C/ ln M ,

denote un,M :=
En,M − EM

∆M (EM )
, ωn,M :=

κMVj − EM

∆M (EM )
.

rescaled eigenvalues rescaled potential values

Questions of interest:

1. the nature of the limiting point process of the rescaled eigenvalues
(including: extent of level repulsion (?), and relation to rescaled
potential values)

2. the nature of the corresponding eigenfunctions (extended versus
localized, and possible meaning of these terms).

7 / 16



Results (informal summary)

Theorem 1 [Bands of partial delocalization (A., Shamis, Warzel)]
I. If either

I E = 0, λ > 0; or
I E = −1, and λ >

√
2, ( ↘%’s Hilbert transform)

and additionally the lim exists: lim
M→∞

M∆M (E)
(

1− κ−1
M % (EM/κM )

)
=: α

then the rescaled eigenvalue point process converges in distribution
to the Šeba point process at level α [defined below].

II. the eigenvalues within the scaling window are delocalized in `1 sense,
localized in `2 sense.

Theorem 2 [A non-resonant delocalized state for λ <
√

2]
For λ <

√
2, there is a sequence of energies satisfying limM→∞ EM = −1

such that within the scaling windows centered at EM :

1. There exists one eigenvalue for which the corresponding eigenfunction
ψE is `2-delocalized [. . . ]

2. All other eigenfunctions in the scaling window are `2-localized [. . . ]
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Theorem 3 [Localization]
Within any sequence of scaling windows centered asymptotically at

E = lim
M→∞

EM ∈ (−λ, λ)\{−1, 0} ,

1. the rescaled eigenvalues (uM,n) coincide asymptotically, in probability,
with the point process (ωM,n) of the rescaled potential values
(the two being compared within scaling windows of fixed, but arbitrarily
large size [−W ,W ])

2. the eigenfunctions corresponding to energies with |uM,n| < W are all
`2-localized in the sense that with asymptotically full probability all
satisfy, for any γ > 0:

1 ≤ ‖ψM,n‖2

‖ψM,n‖∞
≤ 1 +O

(
1

M(E/λ)2(1−γ)

)
+O

(
1

M1/2−γ

)
.
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Key elements of the proof
I Rank-one perturbation arguments yield the characteristic equation:

Eigenvalues :
1
M

∑
n

1
κMVn − E

= 1 (∗)

Eigenvectors : ψj,E =
1

κMVj − E
up to normalization

I To study the scaling limit we distinguish between the head contribution
in (*), SM,ω(u), and the tail sum, transforming (*) into:

SM,ω(u) = M∆M (E)− TM,ω(u) := −RM,ω(u)

with
TM,ω(u) =

∑
n

1[|ωn| ≥ ln M]

ωM,n − u

I Prove & apply some general results concerning limits of
random Pick functions (aka Herglotz - Nevanlinna functions).
In particular: the scaling limit of a function such as RM,ω(u) is either:

i. constant⇒ Šeba process & semi-delocalization,
ii. singular (+∞) or (−∞)⇒ localization, or
iii. singular with transition⇒ localization + single deloc. state

(E = −1, λ <
√

2)
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Random Pick functions, and some facts about their limits

Pick class functions(∗): functions F : C+ 7→ C+ which are:
i) analytic in C+, and ii) satisfy Im F (x + iy) ≥ 0 for y > 0.

Such functions have the Herglotz representation:

F (z) = aF z + bF +

∫ (
1

x − z
− x

1 + x2

)
µF (dx)

P(a, b) - the subclass of Pick functions which are analytic in (a, b) ⊂ R.
Pick, Löwner, Herglotz, Nevanlinna

Random Pick functions:
µF (dx) a random measure, e.g. point process, (aF , bF ) may also be random.

The charact. eq. SM,ω(u) = −RM,ω(u) relates two rather different examples:

1. SM,ω(u): its spectral measure µS converges to a Poisson process

2. RM,ω(u): is in P(−LM , LM ) for LM = ln M →∞
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The “oscillatory part”

-α

ωnun

Prop 1: For any Pick function Sω(x) which is stationary and ergodic under
shifts, and of purely singular spectral measure, the value of Sω(x) has the
general Cauchy distribution (D= aY + b; Y Cauchy RV)

(See A.-Warzel ‘13, may have been know to Methuselah.)

Among the interesting examples:

1. (periodic) the function Sθ(u) = cot(u + θ)

2. (random, no level repulsion) the Poisson-Stieltjes function Sω(u)

3. (random, with level repulsion) the Wigner matrix resolvent
S(u) = 〈0| ∆N (E)

Hω,N−(E+u∆N (E))
|0〉
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Linearity away from the spectrum

Lemma: Let F (z) be a function in P(−L, L). Then ∀W < L/3
and u, u0, u1 ∈ [−W ,W ],:∣∣∣∣F (u)− F (u0)

u − u0
− F (u1)− F (u0)

u1 − u0

∣∣∣∣ ≤ 2
W
L

F (u1)− F (u0)

u1 − u0

W-W-L L

Prop. 2:(A-S-W) Functions FM ∈ P(−LM , LM ) with LM →∞
can only have one of the following 3 limits

i. F (z) = az + b,
ii. singular: (+∞) or (+∞) ,
iii. singular with transition

and for (i) & (ii) convergence at two points suffices
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The Šeba process

Let ω be the Poisson process of constant intensity 1.
The corresponding Stieltjes-Poisson random function

Sω(u) := lim
w→∞

∑
n

1[|ωn| ≤ w ]

ωn − u
(lim exists a.s.)

For specified α ∈ [−∞,∞], denote by {un,ω(α)}
the solutions of:

Sω(u) = α

Definition
We refer to the intertwined point process ({un, ωn}}
as the Šeba point processes at level α.

-α

ωnun

Remarks:
I Limiting cases α = ±∞: Poisson process
I Intermediate statistics with some level repulsion

Šeba 1990, Albeverio-Šeba 1991
Bogomolny/Gerland/Schmit 2001, Keating-Marklof-Winn 2003
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Putting it all together

1. Proofs of Theorems 1 - 3 (the spectral characteristics of HM,ω)

2. validity of the heuristic criterion for resonant delocalization

3. different localization criteria

4. comments on operators with additional mixing terms
(crossover to random matrix asymptotics)
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Thanks for your attention
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