# Many Body Localization without quenched disorder

#### Wojciech De Roeck / Francois Huveneers Leuven / Paris

12th June 2014

#### Guiding question for us

Q: Are there many-body systems at nonzero temperature that do **not** transport any heat (local energy excess stays for ever)?

#### Guiding question for us

Q: Are there many-body systems at nonzero temperature that do **not** transport any heat (local energy excess stays for ever)?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

... in a generic way. (non-interacting systems  $\neq$  generic.)

#### Guiding question for us

Q: Are there many-body systems at nonzero temperature that do **not** transport any heat (local energy excess stays for ever)?

... in a generic way. (non-interacting systems  $\neq$  generic.)

A: If the system is quantum and disordered and on a lattice, then seemingly 'yes', at least in theory: Many-Body Localization (almost proof Imbrie)

Q: Are there many-body systems at nonzero temperature that do **not** transport any heat (local energy excess stays for ever)?

... in a generic way. (non-interacting systems  $\neq$  generic.)

A: If the system is quantum and disordered and on a lattice, then seemingly 'yes', at least in theory: Many-Body Localization (almost proof Imbrie)

Q': But can you make them without disorder, i.e. translation-invariant?

Problem: eigenstates are also eigenstates of momentum  $\Rightarrow$  need spontaneous symmetry breaking.

Q: Are there many-body systems at nonzero temperature that do **not** transport any heat (local energy excess stays for ever)?

... in a generic way. (non-interacting systems  $\neq$  generic.)

A: If the system is quantum and disordered and on a lattice, then seemingly 'yes', at least in theory: Many-Body Localization (almost proof Imbrie)

Q': But can you make them without disorder, i.e. translation-invariant?

Problem: eigenstates are also eigenstates of momentum  $\Rightarrow$  need spontaneous symmetry breaking.

A': Yes-votes: Kagan-Maksimov (1984), Mueller-Schiulaz (2013), Garrahan
 et al. (2014), Grover and Fisher (2013), Altschuler??, Cirac??.
 No-votes Huse-Nandkishore ??, me??

- Recap (or intro) to Many-Body Localization (MBL) (with disorder): Heuristics and Imbrie's result.
- A model for MBL without disorder: Heuristic motivation.
- Analysis of resonant graph: Why the naive pro-loc argument is wrong!
- A rigorous result: Asymptotic localization.
- Strategy of Proof: Iterative Perturbation Theory (cfr. spectral flow, talk by Bach)

#### Quantum Spin Chains

- Hilbert space of N spins:  $\mathcal{H}_N = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \ldots \otimes \mathbb{C}^2$
- Spin 1/2 operators S<sup>(i)</sup>, i = 1, 2, 3 on C<sup>2</sup> and local copies S<sup>(i)</sup><sub>x</sub> on H<sub>N</sub>:



• Vectors  $\Psi \in \mathcal{H}_N$ . Example: classical configurations  $\eta$  : e.g.  $|\uparrow\uparrow\uparrow\uparrow\ldots\rangle, |\uparrow\downarrow\uparrow\downarrow\ldots\rangle$ 

$$|\Psi_\eta = |\eta
angle := \otimes_x |\eta(x)
angle, \qquad \eta(x) \in \{\uparrow,\downarrow\}, \qquad S^{(3)}|\uparrow
angle = |\uparrow
angle$$

- Local Hamiltonians of the form
  - $H = hH_{free} + tH_{hop},$ t : hopping strength

with

$$H_{free} = \sum_{x} S_{x}^{(3)}, \qquad H_{hop} = \sum_{x} \sum_{i,i'=1,2,3} J(i,i') S_{x}^{(i)} S_{x+1}^{(i')}$$

Think: a generic (non-integrable) local interaction.

#### Intuition for localization: Two-site model

lf

$$H = h_1 S_1^{(3)} + h_2 S_2^{(3)} + t H_{hop}, \qquad h_1, h_2 \ge 0$$

 $|\eta\rangle$  are t = 0 eigenstates. Do naive perturbation theory in t:

$$\begin{array}{c|c|c|c|c|c|c|c|c|} \eta & |\uparrow\uparrow\rangle & |\uparrow\downarrow\rangle & |\downarrow\downarrow\rangle & |\downarrow\uparrow\rangle \\ \hline E_{t=0}(\eta) & h_1 + h_2 & h_1 - h_2 & -h_1 - h_2 & -h_1 + h_2 \\ \hline t \ll |\Delta E| = 2|h_1 \pm h_2| \end{array}$$

then perturbation theory is good  $\Rightarrow$  new eigenstates close to t = 0 eigenstates.

#### Perturbation theory in two-site model

$$H = h_1 S_1^{(3)} + h_2 S_2^{(3)} + t H_{hop}, \qquad h_1, h_2 \ge 0$$

Localization if  $t \le |h_1 \pm h_2|$ . Perturbation theory applies. Eigenstates at  $t \ne 0$  small perturbations of t = 0.



 $|\eta\rangle$ 's do not hybridize (mix)

Delocalization if  $t > |h_1 \pm h_2|$ . PT does not apply. States  $\eta$  are resonant  $\Rightarrow$  they mix and spread over two sites

$$\begin{pmatrix} + & - \\ \\ - & + \end{pmatrix} \longleftrightarrow \begin{pmatrix} - & + \\ + & - \end{pmatrix}$$

 $|\eta\rangle$ 's hybridize (mix)

#### Intuition: Full chain

$$H = \sum_{x} h_{x} S_{x}^{(3)} + t H_{hop}, \qquad h_{x} \text{ i.i.d. R.V.}$$

Bond (x, x + 1) resonant when  $|h_x \pm h_{x+1}| \le t$ 



If  $t/Var(h) \ll 1$  (strong disorder)  $\Rightarrow$  Resonant bonds are sparse and isolated. Try full PT

- away from resonant clusters: nondegenerate PT (large gaps): states remain local.
- at resonant clusters: degenerate PT: no control but clusters are themselves localised.

Iterative scheme (Imbrie-Spencer, Imbrie) provides a framework

#### Many Body Localization: towards precise meaning

Diagonalization:  $\exists$  quasilocal unitary U such that

$$UHU^* = \tilde{H}_{free}, \qquad U \text{ locally close to } 1$$

- $\tilde{H}_{free}$  is diagonal in  $\eta$ -basis.  $\tilde{H}_{free} = \sum_{\eta} \tilde{H}_{free}(\eta) |\eta\rangle \langle \eta|$ .
- $\tilde{H}_{free}(\eta)$  is a random classical potential with exponential decay

$$\tilde{H}_{free}(\eta) = \sum_{x} f_{x}(\eta_{x}) + tf_{\{x,x\pm1\}}(\eta_{x},\eta_{x\pm1}) + t^{2} \dots$$

... except at resonant spots,...where there is no spatial decay. Those resonant spots are rare with high Prob.

- Similar condition on U:  $UO_x U^* = O'_x + tO'_{x,x\pm 1} + \dots$
- All decays of course uniform in volume N.

# Theorem (Imbrie)

 $H = \sum_{x} (h_x S_x^{(3)} + t_x H_{hop,x})$  with i.i.d. disorder in both  $t_x, h_x$ .

Assumption: (Limited Level Attraction)

$$\mathbb{P}(\min_{E\neq E'} |E-E'| \le \delta\} \le \delta^{\nu} C^{N}$$

for some  $C, \nu > 0$ , and with E, E' e.v. of  $H_N$  (volume [1, N]).

 $\Rightarrow$  MBL holds when  $Var(t_x) \ll Var(h_x)$  (set  $\mathbb{E}(t_x) = 0$ ) What about assumption?

• OK if  $H_N$  has Poisson statistics,

$$\mathbb{P}(\min |E - E'| \le \delta) \le C\delta 4^N.$$

• OK if  $H_N$  has random-matrix statistics (level repulsion), then

$$\mathbb{P}(\min |E - E'| \le \delta) \le C\delta^2 8^N.$$

• No sensible reason to believe that e.v. would attract:  $\nu < 1$ .

#### MBL: Consequences

Diagonalization:  $\exists$  quasilocal unitary U such that

$$UHU^* = { ilde H}_{free}, \qquad U \mbox{ locally close to } 1$$

- $\eta$  is a natural approx. and label for true eigenstates  $U^*|\eta\rangle$ .
- Full set of local commuting conserved quantitites  $U^* S_x^{(3)} U$ .
- Conductivity (defined as  $N \rightarrow \infty$  by Green-Kubo) is zero.
- Order parameter

$$m := rac{1}{2^N} \sum_{ ext{eigenfunctions } \Psi} |\langle \Psi | S_x^{(3)} | \Psi 
angle |^2, \qquad egin{array}{cc} m = 1 - \mathcal{O}(t) & ext{MBL} \ m = \mathcal{O}( ext{e}^{-CN}) & ext{ETH} \end{array}$$

because ETH (Eigenstate Thermalization Hypothesis):  $m \sim \langle \Psi | S_x^{(3)} | \Psi \rangle \approx \langle S_x^{(3)} \rangle_{Gibbs, T=\infty} = \frac{1}{2^N} \operatorname{Tr} S_x^{(3)} = 0,$ and MBL:  $m \sim |\langle \eta | S_x^{(3)} | \eta \rangle| = 1$  Idea: Make systems with a large on-site space such that 'most' classical configs  $\eta$  appear disordered.

Example: Bose-Hubbard chain (with q > 1)

$$H = \sum_{x} h n^{q}(x) + t b(x)b^{\dagger}(x+1) + h.c., \qquad b(x), b^{\dagger}(x) \text{ bosons}$$

High density such that

$$\nu := \langle n(x) \rangle_{\mathsf{Gibbs}} \gg 1$$

~ cutoff for occupations  $n(x) = b^{\dagger}(x)b(x) \Rightarrow$  spin system with  $\nu$  states/site.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

#### Resonant spots

Let  $t/h \ll 1$  (equivalent of strong disorder).

Anharmonicity of  $n \rightarrow n^q$  gives us:

No resonance

Resonance



Only local swaps of levels  $(n, n \pm 1)$  are resonant because

$$(\eta(x))^q + (\eta(x+1))^q = (\eta(x)-1)^q + (\eta(x+1)+1)^q$$

'generically' only if 
$$\eta(x) - 1 = \eta(x + 1)$$
.

Resonant spots are rare for a typical config.  $\eta$ :

$$\operatorname{Prob}_{\eta}(\operatorname{resonant} \operatorname{spot} \operatorname{at} \operatorname{site} x) \sim 4/\nu$$

 $(\operatorname{Prob}_{\eta} \operatorname{counting} \operatorname{measure} \operatorname{on} \eta$ 's. No disorder in model<sub>2</sub>),  $z = -\eta q e$ 

In disordered model: resonant spots defined from realization of disorder. Here not!



The resonant spot has shifted when moving (hybridizing) between resonant configs.

So if a typical  $\eta$  has only a few resonant spots, does it mean that it can hybridize only with a few other configs  $\eta'$ ? (in disordered model: trivially 'yes')

# Resonance graph $\mathcal{G}$

**Def**:  $\eta \underset{\mathsf{res}}{\sim} \eta'$  if connected by local swap  $(n, n \pm 1) \rightarrow (n \pm 1, n)$ .



**Def**: Graph 
$$\mathcal{G}$$
 on  $\eta$ 's:  $(\eta, \eta')$  is edge iff.  $\eta \underset{\text{res}}{\sim} \eta'$ 

Q: Small or large connected components?



Example: Connected component of size 3 (total nb. configs =  $\nu^8$ ) save

**Def**: Site x is frozen in config.  $\eta$  iff.  $\eta'(x) = \eta(x) \ \forall \eta'$  in connected component of  $\eta$ .

Meaning: In PT, connected component of  $\eta$  is set of states with which  $\eta$  mixes (to produce perturbed eigenstate) If x frozen in  $\eta$ , then perturbed eigenstate looks like  $\eta$  in x.



Example: 5 out of 8 sites are frozen.

Answer: Take  $\nu \gg 1$  and recall N is length chain.

 $\operatorname{Prob}_{\eta}(\operatorname{at} \operatorname{least} (1 - C/\nu)N \text{ sites are frozen}) \geq 1 - e^{-cN}$ 

So: Most perturbed eigenstates (in first order of PT) look locally like classic configs.

( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) (

Answer: Take  $\nu \gg 1$  and recall N is length chain.

 $\operatorname{Prob}_{\eta}(\operatorname{at} \operatorname{least} (1 - C/\nu)N \text{ sites are frozen}) \geq 1 - e^{-cN}$ 

So: Most perturbed eigenstates (in first order of PT) look locally like classic configs.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

But this is not at all robust!

## Most sites are frozen ... until we change the model

Answer: Take  $\nu \gg 1$  and recall N is length chain.

 $\operatorname{Prob}_{\eta}(\operatorname{at} \operatorname{least} (1 - C/\nu)N \text{ sites are frozen}) \geq 1 - e^{-cN}$ 

So: Most perturbed eigenstates (in first order of PT) look locally like classic configs.

But this is not at all robust!

Small change in model: Add next-to-nearest neighbour hopping  $\Rightarrow$  new, but similar, picture



 $\operatorname{Prob}_{\eta}(\operatorname{resonant} \operatorname{spot} \operatorname{at} x) \sim 8/\nu$ 

So, if  $\nu \gg 8$ , resonant spots are rare also within this model.

#### Resonant graph G nearly fully connected!

'Flemish Mountain'  $\mathcal{F}$ : Ultra-flat config of length  $2^{\nu}$ .



 $\mathcal{F}$  (represented by ) can travel through arbitrary background  $\eta$ :



 ${\mathcal F}$  also helps to hybridize with all  $\eta'$ 's and unfreezes all sites. Note: need volume at least  $\sim \nu^{2^{\nu}}$  so that there is typically somewhere  ${\mathcal F}$ .

< □ > < (四 > < (回 > ) < (回 > ) < (回 > ) < (回 > ) (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ ) [□ ] (□ )

# Mobility of ${\mathcal F}$

Transport of one level through  $\mathcal{F}$ .



SQA

#### What have we done?

#### Procedure

- Start with some  $H = H_{free} + tH_{hop}$ .
- Do 0'th order problem

$$P_{H_{free}=\mu N} H P_{H_{free}=\mu N} = Const + tA_{\mathcal{G}}, \qquad \mu \gg 1$$

with  $\mathcal{A}_{\mathcal{G}}$  a (weighted) adjacency matrix of graph  $\mathcal{G}.$ 

#### 'Result'

• d = 1 nearest neighbour hop.

 $\Rightarrow \mathcal{G}$  has many small components, size  $\mathcal{O}(1) \Rightarrow A_{\mathcal{G}}$  manifestly loc.

d = 1 next-to-nearest neighbour hopping or on two-lane strip
d > 1.

⇒  $\mathcal{G}$  has a few large components, size  $\mathcal{O}(CN)$  ⇒ ? because  $\exists$  connected graphs with adjacency matrix localised.

#### What have we done?

#### Procedure

- Start with some  $H = H_{free} + tH_{hop}$ .
- Do 0'th order problem

$$P_{H_{free}=\mu N} H P_{H_{free}=\mu N} = Const + tA_{\mathcal{G}}, \qquad \mu \gg 1$$

with  ${\it A}_{\cal G}$  a (weighted) adjacency matrix of graph  ${\cal G}.$ 

#### 'Result'

• d = 1 nearest neighbour hop.

 $\Rightarrow \mathcal{G}$  has many small components, size  $\mathcal{O}(1) \Rightarrow A_{\mathcal{G}}$  manifestly loc.

d = 1 next-to-nearest neighbour hopping or on two-lane strip
d > 1.

⇒  $\mathcal{G}$  has a few large components, size  $\mathcal{O}(CN)$  ⇒ ? because  $\exists$  connected graphs with adjacency matrix localised. Relevance: ... and then, what about higher orders...?

#### Asymptotic Localisation

Idea: Localisation gets better as  $\nu \to \infty$  and  $T(\text{Temp}) \sim \nu^q$  $\Rightarrow$  Conjecture for conductivity  $\kappa(T)$ :

$$T^m\kappa(T) o 0,$$
 as  $T o \infty$ , for any  $m > 0$ 

This conjecture stands regardless of existence/non-existence  $\mathcal{F}$  because  $\operatorname{Prob}_{\eta}(\mathcal{F} \text{ appears at site } x) \sim \nu^{-2^{\nu}}$ .

Def of conductivity  $\kappa$ : Split  $H = \sum_{x} H_{x}$  and define current operator  $j_{x}$ :

$$j_x = i[H, \sum_{y > x} H_x],$$
 such that  $\nabla j_x = -\partial_t j_x(t) = i[H, H_x].$   
Then  $\kappa(T) := \frac{1}{T^2} \int_{-\infty}^{\infty} dt \lim_{N \to \infty} \sum_x \langle j_x(t) j_0(0) \rangle_{\text{Gibbs}_T}$ 

#### Asymptotic Localisation

Idea: Localisation gets better as  $\nu \to \infty$  and  $T(\text{Temp}) \sim \nu^q$  $\Rightarrow$  Conjecture for conductivity  $\kappa(T)$ :

$$T^m\kappa(T) o 0,$$
 as  $T o \infty$ , for any  $m > 0$ 

This conjecture stands regardless of existence/non-existence  $\mathcal{F}$  because  $\operatorname{Prob}_{\eta}(\mathcal{F} \text{ appears at site } x) \sim \nu^{-2^{\nu}}$ .

Def of conductivity  $\kappa$ : Split  $H = \sum_{x} H_{x}$  and define current operator  $j_{x}$ :

$$j_x = i[H, \sum_{y > x} H_x],$$
 such that  $\nabla j_x = -\partial_t j_x(t) = i[H, H_x].$   
Then  $\kappa(T) := \frac{1}{T^2} \int_{-\infty}^{\infty} dt \lim_{N \to \infty} \sum_x \langle j_x(t) j_0(0) \rangle_{\text{Gibbs}_T}$ 

Too hard, ... but modify  $\kappa(T) \to \kappa_{\tau}(T)$  by  $\int_{-\infty}^{\infty} \to \int_{-\tau}^{\tau}$  (cutoff  $\tau$ ):

## Asymptotic Localisation: Theorem

... but modify 
$$\kappa(T) \to \kappa_{\tau}(T)$$
 by  $\int_{-\infty}^{\infty} \to \int_{-\tau}^{\tau}$  (cutoff  $\tau$ ):

Theorem for q > 2: *almost* Asymptotic Loc

 $T^m \kappa_{\tau=T^p}(T) o 0$ , as  $T \to \infty, \forall m > 0, p > m + C$ .

- Cutoff τ: Should model the fact that eventually the current-current correlation decays (so: *assumption* that there is no localization, but chaos)
- This suggests that transport has a non-perturbative origin in  $1/{\it T}$  .
- Asymptotic localisation is also what remains of localisation in disordered classical systems. (Dhar-Lebowitz 2008, Oganesyan-Pal-Huse 2009, Basko 2011). Here, no *real* loc expected.
- Asymptotic localisation  $\approx$  Nekoroshev estimates in many body systems.

#### Asymptotic localization: Classical Mechanics



Stochastic velocity flips  $\omega_x \to -\omega_x$  with rate  $\delta$  s.t. full dynamics

 $\{H, \cdot\} \longrightarrow \{H, \cdot\} + \delta \operatorname{Markov-Generator}_{\omega - \operatorname{flips}}$ 

Asymptotic Localization - alternative formulation

$$\kappa(t,\delta=t^p)\leq C(m)t^m,\qquad orall m>0, p>m+C$$

Very suggestive: Conductivity due to noise  $\Rightarrow \kappa(t,0) \leq C(m)t^m$ 

#### Proof (Quantum case): Spectral Flow

Scheme (Imbrie, Spencer): Write  $H = hH_{free} + tH_{hop} =: D + \epsilon V$ 

• In  $H = D + \epsilon V$ , we try to eliminate  $\epsilon V$  by unitary conjugation

$$e^{-\epsilon A}He^{\epsilon A} = D - \epsilon[A, D] + \epsilon V + O(\epsilon^2)$$

• Terms of  $\mathcal{O}(\epsilon)$  indeed vanish if

$$\langle \eta', A\eta \rangle = \frac{\langle \eta', V\eta \rangle}{D(\eta') - D(\eta)}$$

with  $D(\eta) = \langle \eta, D\eta \rangle$ .

• Hence split  $V = V_{res} + V_{Nres}$  with

$$V_{res} = \sum_{\eta,\eta'} \chi[D(\eta) - D(\eta') = 0] \; |\eta
angle \langle \eta V \eta' 
angle \langle \eta' |$$

We can only eliminate  $V_{Nres}$  because division by  $D(\eta') - D(\eta)$ 

We obtain unitarily equivalent Hamiltonian

$$H^{(1)} := \mathrm{e}^{-\epsilon A} H \mathrm{e}^{\epsilon A} = D + \epsilon V_{res} + \mathcal{O}(\epsilon^2)$$

The O(ε<sup>2</sup>) term is the new perturbation ⇒ do again rotations to get O(ε<sup>4</sup>), O(ε<sup>8</sup>),.... This decreases the 'hopping' term! ⇒ decreases transport.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• However, resonant part  $\epsilon V_{res}$  has to be treated nonpeturbatively. We need that  $D + \epsilon V_{res}$  is localized.  $\Rightarrow$ analysis of resonance graph  $\mathcal{G}$ . We obtain unitarily equivalent Hamiltonian

$$H^{(1)} := \mathrm{e}^{-\epsilon A} H \mathrm{e}^{\epsilon A} = D + \epsilon V_{res} + \mathcal{O}(\epsilon^2)$$

- The O(ε<sup>2</sup>) term is the new perturbation ⇒ do again rotations to get O(ε<sup>4</sup>), O(ε<sup>8</sup>),.... This decreases the 'hopping' term! ⇒ decreases transport.
- However, resonant part  $\epsilon V_{res}$  has to be treated nonpeturbatively. We need that  $D + \epsilon V_{res}$  is localized.  $\Rightarrow$ analysis of resonance graph  $\mathcal{G}$ .

# Thanks

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで