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Guiding question for us

Q: Are there many-body systems at nonzero temperature that do
not transport any heat (local energy excess stays for ever)?

. . . in a generic way. (non-interacting systems 6= generic.)

A: If the system is quantum and disordered and on a lattice, then
seemingly ’yes’, at least in theory: Many-Body Localization
(almost proof Imbrie)

Q’: But can you make them without disorder, i.e.
translation-invariant?

Problem: eigenstates are also eigenstates of momentum ⇒ need
spontaneous symmetry breaking.

A’: Yes-votes: Kagan-Maksimov (1984), Mueller-Schiulaz (2013), Garrahan

et al. (2014), Grover and Fisher (2013), Altschuler??, Cirac??.
No-votes Huse-Nandkishore ??, me??
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Plan of talk

Recap (or intro) to Many-Body Localization (MBL) (with
disorder): Heuristics and Imbrie’s result.

A model for MBL without disorder: Heuristic motivation.

Analysis of resonant graph: Why the naive pro-loc argument
is wrong!

A rigorous result: Asymptotic localization.

Strategy of Proof: Iterative Perturbation Theory (cfr. spectral
flow, talk by Bach)



Quantum Spin Chains

Hilbert space of N spins: HN = C2 ⊗ C2 ⊗ . . .⊗ C2

Spin 1/2 operators S (i), i = 1, 2, 3 on C2 and local copies S
(i)
x

on HN :

S
(i)
x = . . .⊗ 1︸︷︷︸

site x−1

⊗ S (i)︸︷︷︸
site x

⊗ 1︸︷︷︸
site x+1

⊗ . . .

Vectors Ψ ∈ HN . Example: classical configurations η : e.g.
| ↑↑↑ . . .〉, | ↑↓↑↓ . . .〉

Ψη = |η〉 := ⊗x |η(x)〉, η(x) ∈ {↑, ↓}, S (3)| ↑〉 = | ↑〉

Local Hamiltonians of the form

H = hHfree + tHhop,
h : field (will be site-dependent)
t : hopping strength

with

Hfree =
∑
x

S
(3)
x , Hhop =

∑
x

∑
i ,i ′=1,2,3

J(i , i ′)S
(i)
x S

(i ′)
x+1

Think: a generic (non-integrable) local interaction.



Intuition for localization: Two-site model

H = h1S
(3)
1 + h2S

(3)
2 + tHhop, h1, h2 ≥ 0

|η〉 are t = 0 eigenstates. Do naive perturbation theory in t:

η | ↑↑〉 | ↑↓〉 | ↓↓〉 | ↓↑〉
Et=0(η) h1 + h2 h1 − h2 −h1 − h2 −h1 + h2

If
t � |∆E | = 2|h1 ± h2|

then perturbation theory is good ⇒ new eigenstates close to t = 0
eigenstates.



Perturbation theory in two-site model

H = h1S
(3)
1 + h2S

(3)
2 + tHhop, h1, h2 ≥ 0

Localization if t ≤ |h1 ± h2|. Perturbation theory applies.
Eigenstates at t 6= 0 small perturbations of t = 0.

|η〉’s do not hybridize (mix)

Delocalization if t > |h1 ± h2|. PT does not apply. States η are
resonant ⇒ they mix and spread over two sites

|η〉’s hybridize (mix)



Intuition: Full chain

H =
∑
x

hxS
(3)
x + tHhop, hx i.i.d. R.V.

Bond (x , x + 1) resonant when |hx ± hx+1| ≤ t

hx

x

resonances
delocalized spots

If t/Var(h)� 1 (strong disorder) ⇒ Resonant bonds are sparse
and isolated. Try full PT

away from resonant clusters: nondegenerate PT (large gaps):
states remain local.

at resonant clusters: degenerate PT: no control but clusters
are themselves localised.

Iterative scheme (Imbrie-Spencer, Imbrie) provides a framework



Many Body Localization: towards precise meaning

Diagonalization: ∃ quasilocal unitary U such that

UHU∗ = H̃free , U locally close to 1

H̃free is diagonal in η-basis. H̃free =
∑

η H̃free(η) |η〉〈η|.

H̃free(η) is a random classical potential with exponential decay

H̃free(η) =
∑
x

fx(ηx) + tf{x ,x±1}(ηx , ηx±1) + t2 . . .

. . . except at resonant spots,...where there is no spatial decay.
Those resonant spots are rare with high Prob.

Similar condition on U: UOxU
∗ = O ′x + tO ′x ,x±1 + . . ..

All decays of course uniform in volume N.



Theorem (Imbrie)

H =
∑

x(hxS
(3)
x + txHhop,x) with i.i.d. disorder in both tx , hx .

Assumption: (Limited Level Attraction)

P( min
E 6=E ′

|E − E ′| ≤ δ} ≤ δνCN

for some C , ν > 0, and with E ,E ′ e.v. of HN (volume [1,N]).

⇒ MBL holds when Var(tx)� Var(hx) (set E(tx) = 0)
What about assumption?

OK if HN has Poisson statistics,

P(min |E − E ′| ≤ δ) ≤ Cδ4N .

OK if HN has random-matrix statistics (level repulsion), then

P(min |E − E ′| ≤ δ) ≤ Cδ28N .

No sensible reason to believe that e.v. would attract: ν < 1.



MBL: Consequences

Diagonalization: ∃ quasilocal unitary U such that

UHU∗ = H̃free , U locally close to 1

η is a natural approx. and label for true eigenstates U∗|η〉.
Full set of local commuting conserved quantitites U∗S

(3)
x U.

Conductivity (defined as N →∞ by Green-Kubo) is zero.

Order parameter

m :=
1

2N

∑
eigenfunctions Ψ

|〈Ψ|S (3)
x |Ψ〉|2,

m = 1−O(t) MBL
m = O(e−CN) ETH

because ETH (Eigenstate Thermalization Hypothesis):

m ∼ 〈Ψ|S (3)
x |Ψ〉 ≈ 〈S (3)

x 〉Gibbs,T=∞ = 1
2N

Tr S
(3)
x = 0,

and MBL: m ∼ |〈η|S (3)
x |η〉| = 1



How to make MBL without disorder?

Idea: Make systems with a large on-site space such that ’most’
classical configs η appear disordered.

Example: Bose-Hubbard chain (with q > 1)

H =
∑
x

h nq(x) + t b(x)b†(x + 1) + h.c ., b(x), b†(x) bosons

High density such that

ν := 〈n(x)〉Gibbs � 1

∼ cutoff for occupations n(x) = b†(x)b(x) ⇒ spin system with ν
states/site.



Resonant spots
Let t/h� 1 (equivalent of strong disorder).

Anharmonicity of n→ nq gives us:

No resonance

n

x

Resonance

n

x

Only local swaps of levels (n, n ± 1) are resonant because

(η(x))q + (η(x + 1))q = (η(x)− 1)q + (η(x + 1) + 1)q

’generically’ only if η(x)− 1 = η(x + 1).

Resonant spots are rare for a typical config. η:

Probη(resonant spot at site x) ∼ 4/ν

(Probη counting measure on η’s. No disorder in model.)



But resonant spots can travel!

In disordered model: resonant spots defined from realization of
disorder. Here not!

The resonant spot has shifted when moving (hybridizing) between
resonant configs.

So if a typical η has only a few resonant spots, does it mean that
it can hybridize only with a few other configs η′? (in disordered

model: trivially ‘yes’)



Resonance graph G

Def: η ∼
res
η′ if connected by local swap (n, n ± 1)→ (n ± 1, n).

η ∼
res

η′

Def: Graph G on η’s: (η, η′) is edge iff. η ∼
res
η′

Q: Small or large connected components?

Example: Connected component of size 3 (total nb. configs = ν8)



Resonance graph G: frozen sites

Def: Site x is frozen in config. η iff. η′(x) = η(x) ∀η′ in connected
component of η.

Meaning: In PT, connected component of η is set of states with
which η mixes (to produce perturbed eigenstate)
If x frozen in η, then perturbed eigenstate looks like η in x .

Example: 5 out of 8 sites are frozen.



Most sites are frozen

Answer: Take ν � 1 and recall N is length chain.

Probη(at least (1− C/ν)N sites are frozen) ≥ 1− e−cN

So: Most perturbed eigenstates (in first order of PT) look locally
like classic configs.

But this is not at all robust!
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Most sites are frozen . . . until we change the model

Answer: Take ν � 1 and recall N is length chain.

Probη(at least (1− C/ν)N sites are frozen) ≥ 1− e−cN

So: Most perturbed eigenstates (in first order of PT) look locally
like classic configs.
But this is not at all robust!
Small change in model: Add next-to-nearest neighbour hopping ⇒
new, but similar, picture

Probη(resonant spot at x) ∼ 8/ν

So, if ν � 8, resonant spots are rare also within this model.



Resonant graph G nearly fully connected!

’Flemish Mountain’ F : Ultra-flat config of length 2ν .

x

F (represented by ) can travel through arbitrary background η:

F also helps to hybridize with all η′’s and unfreezes all sites. Note:
need volume at least ∼ ν2ν so that there is typically somewhere F .



Mobility of F
Transport of one level through F .



What have we done?

Procedure

Start with some H = Hfree + tHhop.

Do 0’th order problem

PHfree=µN H PHfree=µN = Const + tAG , µ� 1

with AG a (weighted) adjacency matrix of graph G.

’Result’

d = 1 nearest neighbour hop.

⇒ G has many small components, size O(1) ⇒ AG manifestly loc.

d = 1 next-to-nearest neighbour hopping or on two-lane strip

d > 1.

⇒ G has a few large components, size O(CN) ⇒ ?
because ∃ connected graphs with adjacency matrix localised.
Relevance: . . . and then, what about higher orders...?
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Asymptotic Localisation

Idea: Localisation gets better as ν →∞ and T (Temp) ∼ νq
⇒ Conjecture for conductivity κ(T ):

Tmκ(T )→ 0, as T →∞, for any m > 0

This conjecture stands regardless of existence/non-existence F
because Probη(F appears at site x) ∼ ν−2ν .

Def of conductivity κ : Split H =
∑

x Hx and define current
operator jx :

jx = i[H,
∑
y>x

Hx ], such that ∇jx = −∂t jx(t) = i[H,Hx ].

Then κ(T ) :=
1

T 2

∫ ∞
−∞

dt lim
N→∞

∑
x

〈jx(t)j0(0)〉GibbsT

Too hard, . . . but modify κ(T )→ κτ (T ) by
∫∞
−∞ →

∫ τ
−τ (cutoff τ):
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Asymptotic Localisation: Theorem

. . . but modify κ(T )→ κτ (T ) by
∫∞
−∞ →

∫ τ
−τ (cutoff τ):

Theorem for q > 2: almost Asymptotic Loc

Tmκτ=T p(T )→ 0, as T →∞,∀m > 0, p > m + C .

Cutoff τ : Should model the fact that eventually the
current-current correlation decays (so: assumption that there
is no localization, but chaos)

This suggests that transport has a non-perturbative origin in
1/T .

Asymptotic localisation is also what remains of localisation in
disordered classical systems. (Dhar-Lebowitz 2008,

Oganesyan-Pal-Huse 2009, Basko 2011). Here, no real loc expected.

Asymptotic localisation ≈ Nekoroshev estimates in many body
systems.



Asymptotic localization: Classical Mechanics

Rotor Chain

v
v

v v
v&%

'$
&%
'$

&%
'$

&%
'$

&%
'$

1

H(q, ω) =
∑
x

{ω2
x

2
− t cos(θx − θx+1)

}
with θx ∈ S1, θ̇x = ωx

Stochastic velocity flips ωx → −ωx with rate δ s.t. full dynamics

{H, ·} −→ {H, ·}+ δMarkov-Generatorω− flips

Asymptotic Localization - alternative formulation

κ(t, δ = tp) ≤ C (m)tm, ∀m > 0, p > m + C .

Very suggestive: Conductivity due to noise ⇒ κ(t, 0) ≤ C (m)tm



Proof (Quantum case): Spectral Flow

Scheme (Imbrie, Spencer): Write H = hHfree + tHhop =: D + εV

In H = D + εV , we try to eliminate εV by unitary conjugation

e−εAHeεA = D − ε[A,D] + εV +O(ε2)

Terms of O(ε) indeed vanish if

〈η′,Aη〉 =
〈η′,V η〉

D(η′)− D(η)

with D(η) = 〈η,Dη〉.
Hence split V = Vres + VNres with

Vres =
∑
η,η′

χ[D(η)− D(η′) = 0] |η〉〈ηV η′〉〈η′|

We can only eliminate VNres because division by D(η′)−D(η)



Resonant Hamiltonian

We obtain unitarily equivalent Hamiltonian

H(1) := e−εAHeεA = D + εVres +O(ε2)

The O(ε2) term is the new perturbation ⇒ do again rotations
to get O(ε4),O(ε8), . . .. This decreases the ’hopping’ term!
⇒ decreases transport.

However, resonant part εVres has to be treated
nonpeturbatively. We need that D + εVres is localized. ⇒
analysis of resonance graph G.

Thanks
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