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QED of
atomic

resonances

Jérémy
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The atom (1)

Assumptions

• The atom is non-relativistic

• The atom is assumed to have only finitely many excited states

Internal degrees of freedom

• Internal degrees of freedom described by an N-level system

• Hilbert space: CN

• Hamiltonian: N × N matrix given by

His :=

0B@EN · · · 0
...

. . . 0
0 · · · E1

1CA , EN > · · · > E1

• The energy scale of transitions between internal states of the atom is
measured by the quantity

δ0 := min
i 6=j
|Ei − Ej |
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The atom (2)

External degrees of freedom

• Usual Hilbert space of orbital wave functions: L2(R3)

• Position of the (center of mass of the) atom: ~x ∈ R3

• Kinetic energy of the free center of mass motion: − 1
2
∆

Atomic Hamiltonian

• Hilbert space
Hat := L2(R3)⊗ CN

• Hamiltonian:

Hat := −1

2
∆ + His ,

with domain D(Hat) = H2(R3)⊗ CN

Electric dipole moment

Represented by
~d = (d1, d2, d3),

where, for j = 1, 2, 3, dj ≡ I⊗ dj is an N × N hermitian matrix
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The quantized electromagnetic field (1)

Fock space

• Wave vector of a photon: ~k ∈ R3

• Helicity of a photon: λ ∈ {1, 2}
• Notation:

R3 := R3 × {1, 2} =
˘
k := (~k, λ) | ~k ∈ R3, λ ∈ {1, 2}

¯
Moreover, R3n := (R3)×n, and, for B ⊂ R3,

B := B × {1, 2},
Z

B

dk :=
X
λ=1,2

Z
B

d~k

• Hilbert space of states of photons given by

Hf := F+(L2(R3)),

where F+(L2(R3)) is the symmetric Fock space over the space L2(R3) of
one-photon states:

Hf = C⊕
M
n≥1

L2
s (R3n)
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The quantized electromagnetic field (2)

Photon creation- and annihilation operators

Denoted by

a∗(k) ≡ a∗λ(~k), a(k) ≡ aλ(~k), for all k = (~k, λ) ∈ R3

Fock vacuum

Fock space Hf contains a unit vector, Ω, called “vacuum (vector)” and
unique up to a phase, with the property that

a(k)Ω = 0, for all k

Hamiltonian

Hamiltonian of the free electromagnetic field given by

Hf =

Z
R3

|~k|a∗(k)a(k)dk
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Total physical system (1)

Hilbert space

Total Hilbert space:
H = Hat ⊗Hf

Interaction of the atom with the quantized electromagnetic field

Interaction Hamiltonian:
HI := −~d · ~E(~x),

where ~E denotes the quantized electric field:

~E(~x) := −i

Z
R3

Λ(~k)|~k|
1
2~ε(k)

“
e i~k·~x ⊗ a(k)− e−i~k·~x ⊗ a∗(k)

”
dk

• k 7→ ~ε(k) ∈ R3 represents the polarization vector:

|~ε(k)| = 1, ~ε(k) · ~k = 0, ~ε((r~k, λ)) = ~ε((~k, λ)), ∀r > 0, ∀k ∈ R3

• Λ : R3 7→ R is an ultraviolet cut-off:

Λ(~k) = e−|
~k|2/(2σ2

Λ), σΛ ≥ 1
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Total physical system (2)

Total Hamiltonian

Total Hamiltonian of the system:

H := Hat + Hf + λ0HI , λ0 ∈ R

Translation invariance

• Photon momentum operator:

~Pf :=

Z
R3

~ka∗(k)a(k)dk

• Total momentum operator:

~Ptot := −i ~∇+ ~Pf

•
[H, ~Ptot,j ] = 0, j = 1, 2, 3
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The fibre Hamiltonian

Direct integrals

• Isomorphism

H = L2(R3)⊗ CN ⊗Hf
∼= L2(R3; CN ⊗Hf )

• Direct integral decomposition

H =

Z ⊕
R3

H~pd~p, H =

Z ⊕
R3

H(~p)d~p,

where the fibre space is
H~p := CN ⊗Hf ,

and the fibre Hamiltonian is

H(~p) := His +
1

2
(~p − ~Pf )2 + Hf + λ0HI ,0,

where

HI ,0 := i

Z
R3

Λ(~k)|~k|
1
2

“
~ε(k) · ~d ⊗ a(k)− ~ε(k) · ~d ⊗ a∗(k)

”
dk
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Spectrum of H0(P)

Simplification

Subtracting the trivial term ~p2/2, we obtain the Hamiltonian

H(~p) := His +
1

2
~P2

f − ~p · ~Pf + Hf + λ0HI ,0

Non-interacting Hamiltonian

H0(~p) := His +
1

2
~P2

f − ~p · ~Pf + Hf

Spectrum
•

σ(H0(~p)) =

(
[E1,∞) if |~p| ≤ 1,

[E1 + |~p| − 1
2
− ~p2

2
,∞) if |~p| ≥ 1.

• Pure point spectrum

σpp(H0(~p)) = {E1,E2, . . .EN} for all ~p ∈ R3
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Complex dilatations in Fock space

Dilatation operator in the 1-photon space

(Unitary) dilatation operator: for θ ∈ R,

γθ(φ)(~k, λ) := e−3θ/2φ(e−θ~k, λ), for φ ∈ L2(R3)

Second quantization

Second quantization of γθ: Γθ := Γ(γθ) operator on Hf defined by:

Γθ(Φ)(k1, . . . , kn) := e−3nθ/2Φ(e−θ~k1, λ1, . . . , e
−θ~kn, λn)

Dilated Hamiltonian

Hθ(~p) := ΓθH(~p)Γ∗θ = His +
1

2
e−2θ~P2

f − e−θ~p · ~Pf + e−θHf + λ0HI ,θ,

where

HI ,θ := ie−2θ

Z
R3

Λ(e−θ~k)|~k|
1
2

“
~ε(k) · ~d ⊗ a(k)− ~ε(k) · ~d ⊗ a∗(k)

”
dk.

Analytically extended to D(0, π/4) := {θ ∈ C : |θ| < π/4}.
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Spectrum of the non-interacting dilated
Hamiltonian

Non-interacting dilated Hamiltonian

Hθ,0(~p) := His + e−2θ
~P2

f

2
− e−θ~p · ~Pf + e−θHf

Spectrum

For δ0 > 0, E1, . . . ,EN are simple eigenvalues of Hθ,0(~p). For |~p| < 1 and
θ = iϑ, ϑ ∈ R, the spectrum of Hθ,0(~p) is included in a region of the following
form:

E1 E2 E3 ... EN

ϑ
2ϑ

Figure: Shape of the spectrum of Hθ,0(~p) for ~p ∈ R3, |~p| < 1.
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Main results

Theorem (Ballesteros, F, Fröhlich, Schubnel)

Let 0 < ν < 1. There exists λc(ν) > 0 such that, for all |λ0| < λc(ν) and
~p ∈ R3, |~p| < ν, the following properties are satisfied:

a) E(~p) := inf σ(H(~p)) is a non-degenerate eigenvalue of H(~p),

b) For all i0 ∈ {1, · · · ,N} and θ ∈ C with 0 < Im(θ) < π/4 large enough,
Hθ(~p) has an eigenvalue, z (∞)(~p), such that z (∞)(~p)→ Ei0 as λ0 → 0.
For i0 = 1, z (∞)(~p) = E(~p).

Moreover, for |~p| < ν, |λ0| small enough and 0 < Im(θ) < π/4 large enough,
the ground state energy, E(~p), its associated eigenprojection, π(~p), and
resonances energies, z (∞)(~p), are analytic in ~p, λ0 and θ. In particular, they
are independent of θ
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Renormalized mass

Renormalized mass

• Rotation symmetry: E(~p) = E(|~p|)
• The renormalized mass of the atom can be defined by

mren =
1

(∂2
|~p|E)(0) + 1

where ∂|~p| =
~p

|~p| · ∇~p
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Cerenkov radiation

Conjecture

• For |~p| > 1, E(~p) is not an eigenvalue

• Preliminary results: [De Roeck,Fröhlich,Pizzo ’13]

• In what follows, we always assume that |~p| < 1
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Ground states of related (translation
invariant) models

Free electron

• Nelson model

• [Fröhlich ’73], [Pizzo ’03]: E(~p) is not an eigenvalue (unless an infrared
regularization is imposed)

• [Abdesselam,Hasler ’13]: E(~p) analytic in ~p and λ0

• Pauli-Fierz model

• [Chen,Fröhlich ’07], [Chen ’08], [Hasler,Herbst ’08] [Chen,Fröhlich,Pizzo
’09]

E(~p) is an eigenvalue⇔ ∇E(~p) = 0⇔ ~p = ~0.

For ~p 6= ~0, a ground state exists in a “non-Fock representation”
• [Bach,Chen,Fröhlich,Sigal ’07], [Chen ’08], [Chen,Fröhlich,Pizzo ’09],

[Fröhlich,Pizzo ’10]: ~p 7→ E(~p) is twice differentiable near 0

Atoms and ions

[Amour,Grébert,Guillot ’06], [Loss,Miyao,Spohn ’07],
[Fröhlich,Griesemer,Schlein ’07], [Hasler,Herbst ’08]: (for Pauli-Fierz models)

E(~p) is an eigenvalue⇔ (Total charge vanishes) or (~p = ~0)
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Analyticity in the coupling constant

Models with static nuclei

[Griesemer,Hasler ’09], [Hasler,Herbst ’11]: For different models related to
non-relativistic QED, analyticity in the coupling constant, proven using
spectral renormalization group
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Resonances

Models with static nuclei

[Bach,Fröhlich,Sigal ’98], [Abou Salem,F,Fröhlich,Sigal ’09], [Sigal ’09],
[Bach,Ballesteros,Fröhlich ’13]: For different models related to non-relativistic
QED, existence of resonances, proven using spectral renormalization group or
iterative perturbation theory

Moving Hydrogen atom (but center of mass confined)

[F ’08] Existence of resonances proven using spectral renormalization group
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Main results (2)

Theorem (Ballesteros, F, Fröhlich, Schubnel)

Let 0 < ν < 1. There exists λc (ν) > 0 such that, for all |λ0| < λc (ν) and ~p ∈ R3,
|~p| < ν, the following properties are satisfied:

a) E(~p) := inf σ(H(~p)) is a non-degenerate eigenvalue of H(~p),

b) For all i0 ∈ {1, · · · ,N} and θ ∈ C with 0 < Im(θ) < π/4 large enough, Hθ(~p)

has an eigenvalue, z(∞)(~p), such that z(∞)(~p)→ Ei0 as λ0 → 0. For i0 = 1,

z(∞)(~p) = E(~p).

Moreover, for |~p| < ν, |λ0| small enough and 0 < Im(θ) < π/4 large enough, the
ground state energy, E(~p), its associated eigenprojection, π(~p), and resonances

energies, z(∞)(~p), are analytic in ~p, λ0 and θ. In particular, they are independent of θ

Main contributions

• Existence of resonances for translation invariant models

• Analyticity of resonances energies in ~p and λ0

• Proof: Inductive construction (“replacing” the spectral renormalization
group analysis and) involving a sequence of ‘smooth Feshbach-Schur
maps’, which yields an algorithm for the calculation of the resonances
energies that converges super-exponentially fast
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Fermi Golden Rule

Proposition (Ballesteros, F, Fröhlich, Schubnel)

Let i0 > 1 and ~p ∈ R3, |~p| < 1. Suppose thatX
j<i0

Z
R3

˛̨̨ X
s∈{1,2,3}

(ds)N−j+1,N−i0+1εs(k)
˛̨̨2
|~k||Λ(~k)|2

δ
`
Ej − Ei0 + |~k| − ~p · ~k +

~k2

2

´
dk > 0,

Then, under the conditions of our main theorem and for |λ0| small enough,
the imaginary part of z (∞)(~p) is strictly negative
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Feshbach-Schur map (1)

Definition (Feshbach-Schur Pairs)

Let P be an operator on a separable Hilbert space V, 0 ≤ P ≤ 1. Assume that
P and P :=

√
1− P2 are both non-zero. Let H and T be two closed

operators on V with identical domains. Assume that P and P commute with
T . We set W := H − T and assume that PWP and PWP are bounded
operators. We define

HP :=T + PWP, HP := T + PWP.

The pair (H,T ) is called a Feshbach-Schur pair associated with P iff

(i) HP and T are bounded invertible on P[V]

(ii) H−1

P
PWP can be extended to a bounded operator on V

For an arbitrary Feshbach-Schur pair (H,T ) associated with P, we define the
(smooth) Feshbach-Schur map by

FP(·,T ) : H 7→ FP(H,T ) := T + PWP − PWPH−1

P
PWP
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Feshbach-Schur map (2)

Theorem ([Bach,Chen,Fröhlich,Sigal ’03], [Griesemer,Hasler ’08])

Let 0 ≤ P ≤ 1, and let (H,T ) be a Feshbach-Schur pair associated with P
(i.e., satisfying properties (i) and (ii) of the previous definition). Define

QP(H,T ) := P − PH−1

P
PWP.

Then the following hold true:

(i) H is bounded invertible on V if and only if FP(H,T ) is bounded
invertible on P[V].

(ii) H is not injective if and only if FP(H,T ) is not injective as an operator
on P[V]:

Hψ = 0, ψ 6= 0 =⇒ FP(H,T )Pψ = 0, Pψ 6= 0,

FP(H,T )φ = 0, φ 6= 0 =⇒ HQP(H,T )φ = 0, QP(H,T )φ 6= 0.
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Wick monomials (1)

Kernels

We denote by
w := {wm,n}m,n∈N0

a sequence of bounded measurable functions,

∀m, n : wm,n : R× R3 × R3m × R3n → C,

that are continuously differentiable in the variables, r ∈ σ(Hf ) ⊂ R,
~l ∈ σ(~Pf ) = R3, respectively, appearing in the first and the second argument,
and symmetric in the m variables in R3m and the n variables in R3n. We
suppose furthermore that

w0,0(0,~0) = 0
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Wick monomials (2)

Generalized Wick monomials

With a sequence, w , of functions, we associate a bounded operator

Wm,n(w) := 1Hf≤1

Z
R3m×R3n

a∗(k1) · · · a∗(km)

wm,n(Hf ; ~Pf ; k1, · · · , km; k̃1, · · · , k̃n)

a(k̃1) · · · a(k̃n)
mY

i=1

dk i

nY
j=1

dk̃ j1Hf≤1

Effective Hamiltonians

For every sequence of functions w and every E ∈ C we define

H[w , E] =
X

m+n≥0

Wm,n(w) + E , W≥1(w) :=
X

m+n≥1

Wm,n(w)
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Analyticity in the total momentum

Complexification of the total momentum

Let ~p∗ ∈ R3, |~p∗| < 1 and θ = iϑ, 0 < ϑ < π/4. We set

µ =
1− |~p∗|

2

and

Uθ[~p∗] := {~p ∈ C3 | |~p − ~p∗| < µ} ∩ {~p ∈ C3 | |Im(~p)| < µ

2
tan(ϑ)}.

For ~p ∈ Uθ[~p∗], we consider the operator

Hθ(~p) := His + e−2θ
~P2

f

2
− e−θ~p · ~Pf + e−θHf + λ0HI ,θ



QED of
atomic

resonances

Jérémy
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The First Decimation Step of Spectral
Renormalization (1)

The first spectral “projection”

• Let ψi0 denote a normalized eigenvector of His associated to the
eigenvalue Ei0 and

Pi0 := |ψi0〉〈ψi0 |

• Let χ ∈ C∞(R) a decreasing function satisfying

χ(r) :=

(
1, if r ≤ 3/4,

0 if r > 1,

and strictly decreasing on (3/4, 1). For ρ0 ∈ (0, 1), let

χρ0 (r) := χ(r/ρ0), χρ0
(r) :=

q
1− χ2

ρ0
(r)

• Operator χi0 is defined by

χi0 := Pi0 ⊗ χρ0 (Hf )
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The First Decimation Step of Spectral
Renormalization (2)

The first Feshbach-Schur map

• For |z − Ei0 | ≤ r0 � ρ0µ sin(ϑ), (Hθ(~p)− z ,Hθ,0(~p)− z) is a
Feshbach-Schur pair associated to χi0

... Ei0−1 Ei0 Ei0+1 ...
ϑ
2ϑ

r0

Figure: Spectrum of Hθ,0(~p) restricted to the range of χ̄i0 =
q

1− χ2
i0

. The

spectral parameter z is located inside D(Ei0 , r0)

• Expanding the resolvent into a Neumann series, and using Wick ordering,
one verifies that there is a sequence of functions w (0)(~p, z) and
E (0)(~p, z) ∈ C such that

Fχi0
(Hθ(~p)−z ,Hθ,0(~p)−z)|Ran(χi0

) =
`
Pi0⊗H[w (0)(~p, z), E (0)(~p, z)]

´
|Ran(χi0

)
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Inductive Construction of Effective
Hamiltonians (1)

Scale parameters

Let (ρj)j∈N0 , (rj)j∈N0 be defined by

ρj = ρ
(2−ε)j

0 , with ε ∈ (0, 1), rj :=
µ sin(ϑ)

32
ρj

Hilbert spaces

A filtration of Hilbert spaces (H(j))j∈N0 is given by setting

H(j) = 1Hf≤ρj [Hf ]
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Inductive Construction of Effective
Hamiltonians (2)

Effective Hamiltonians

We construct inductively a sequence of complex numbers {z (j−1)(~p)}j∈N0 ,
z (−1)(~p) := Ei0 , and, for every z ∈ D(z (j−1)(~p), rj), a sequence of functions
w (j)(~p, z) and a complex number E (j)(~p, z):

(a) Let

W (j)
m,n(~p, z) := Wm,n(w (j)(~p, z)), H(j)(~p, z) := H[w (j)(~p, z), E (j)(~p, z)],

acting on H(j), (with m, n ∈ N0). Then

H(j+1)(~p, z) = Fχρj+1
(Hf )[H

(j)(~p, z),W
(j)
0,0(~p, z) + E (j)(~p, z)]|1Hf≤ρj+1

is well defined.

(b) The complex number z (j)(~p) is defined as the only zero of the function

D
“
z (j−1)(~p),

2

3
rj
”
3 z −→ E (j)(~p, z) = 〈Ω| H(j)(~p, z)Ω〉
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Inductive Construction of Effective
Hamiltonians (3)

Isospectrality properties

Using isospectrality of the Feshbach-Schur map, we have the following
properties:

Hθ(~p)− z is bounded invertible⇐⇒ H(j)(~p, z) is bounded invertible.

Hθ(~p)− z is not injective⇐⇒ H(j)(~p, z) is not injective.
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Inductive Construction of Effective
Hamiltonians (4)

Estimates

• The following inequality holds:

|z (j)(~p)− z (j−1)(~p)| < rj
2

• H(j)(~p, z) is the sum of the unperturbed Hamiltonian,

T = W
(j)
0,0(~p, z) + E (j)(~p, z), and a perturbation given by W = W

(j)
≥1(~p, z)

whose norm tends to zero, as j tends to ∞, super-exponentially rapidly,

‖W (j)
≥1(~p, z)‖ ≤ Cjρ2

j ,

for some constant C
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Figure: The sets D(z(j)(~p), rj+1) are shrinking super-exponentially fast with j and, for

every j ∈ N0, D(z(j)(~p), rj+1) ⊂ D(z(j−1)(~p), rj ).
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Construction of Eigenvalues and Analyticity
in ~p

Approximate resonances energies

• The sequence of approximate resonance energies (z (j)(~p))j∈N0 is a Cauchy
sequence of analytic functions of ~p. We then define

z (∞)(~p) := lim
j→∞

z (j)(~p) =
\

j∈N0

D
`
z (j−1)(~p), rj

´
,

which is analytic in ~p

• Analyticity in θ, for Im(θ) < π
4

large enough, and in λ0, for |λ0| small
enough, can be shown by very similar arguments.

Isospectrality

Using isospectrality of the Feshbach-Schur map, one verifies that z (∞)(~p) is
an eigenvalue of Hθ(~p); it is the resonance energy that we are looking for
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Thank you!
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