Bulk-edge duality for topological insulators

Gian Michele Graf ETH Zurich

Journées Méthodes Spectrales Spectral Days 2014 CIRM June 9, 2014

Bulk-edge duality for topological insulators

Gian Michele Graf ETH Zurich

Journées Méthodes Spectrales Spectral Days 2014 CIRM June 9, 2014

joint work with Marcello Porta thanks to Yosi Avron

Introduction

Rueda de casino

Hamiltonians

Indices

Further results

Insulator in the Bulk: Excitation gap For independent electrons: band gap at Fermi energy

- Insulator in the Bulk: Excitation gap For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system

- Insulator in the Bulk: Excitation gap For independent electrons: band gap at Fermi energy
- ► Time-reversal invariant fermionic system

- Insulator in the Bulk: Excitation gap For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system

Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance.

- Insulator in the Bulk: Excitation gap For independent electrons: band gap at Fermi energy
- ▶ Time-reversal invariant fermionic system

Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance. Analogy: torus ≠ sphere (differ by genus).

- Insulator in the Bulk: Excitation gap For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system

Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance. Analogy: torus ≠ sphere (differ by genus).

Contributors to the field: Kane, Mele, Zhang, Moore; Fröhlich; Hasan

Material: InAs/GaSb (quantum well); AISb (barrier)

Courtesy: S. Müller, K. Ensslin

Courtesy: S. Müller, K. Ensslin

Courtesy: S. Müller, K. Ensslin

Courtesy: S. Müller, K. Ensslin

Deformation as interpolation in physical space:

Gap must close somewhere in between. Hence: Interface states at Fermi energy.

Deformation as interpolation in physical space:

- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- ▶ Ordinary insulator → void: Edge states

Deformation as interpolation in physical space:

- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- ▶ Ordinary insulator → void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states.

Deformation as interpolation in physical space:

- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- ▶ Ordinary insulator → void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states. (But not conversely!)

In a nutshell: Termination of bulk of a topological insulator implies edge states

In a nutshell: Termination of bulk of a topological insulator implies edge states

Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

In a nutshell: Termination of bulk of a topological insulator implies edge states

Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

More precisely:

Express that property as an Index relating to the Bulk, resp. to the Edge.

In a nutshell: Termination of bulk of a topological insulator implies edge states

 Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

- Express that property as an Index relating to the Bulk, resp. to the Edge.
- Bulk-edge duality: Can it be shown that the two indices agree?

Bulk-edge correspondence. Done?

In a nutshell: Termination of bulk of a topological insulator implies edge states

Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

- Express that property as an Index relating to the Bulk, resp. to the Edge. Yes, e.g. Kane and Mele.
- Bulk-edge duality: Can it be shown that the two indices agree? Schulz-Baldes et al.; Essin & Gurarie

Bulk-edge correspondence. Today

In a nutshell: Termination of bulk of a topological insulator implies edge states

Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

- Express that property as an Index relating to the Bulk, resp. to the Edge. Done differently.
- Bulk-edge duality: Can it be shown that the two indices agree? Done differently.

Introduction

Rueda de casino

Hamiltonians

Indices

Further results

Rueda de casino. Time 0'15"

Rueda de casino. Time 0'25"

Rueda de casino. Time 0'35"

Rueda de casino. Time 0'44"

Rueda de casino. Time 0'44.25"

Rueda de casino. Time 0'44.50"

Rueda de casino. Time 0'44.75"

Rueda de casino. Time 0'45"

Rueda de casino. Time 0'45.25"

Rueda de casino. Time 0'45.50"

Rueda de casino. Time 0'46"

Rueda de casino. Time 0'47"

Rueda de casino. Time 0'55"

Rueda de casino. Time 1'16"

Rueda de casino. Time 3'23"

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)
- are free in between
- must never step on center of the floor

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)
- are free in between
- must never step on center of the floor
- are unlabeled points

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)
- are free in between
- must never step on center of the floor
- are unlabeled points

There are dances which can not be deformed into one another.

What is the index that makes the difference?

A snapshot of the dance

A snapshot of the dance

A snapshot of the dance

A snapshot of the dance

A snapshot of the dance

A snapshot of the dance

A snapshot of the dance

Dance D as a whole

 $\mathcal{I}(D) = \text{parity of number of crossings of fiducial line}$

Introduction

Rueda de casino

Hamiltonians

Indices

Further results

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

translation invariant in the vertical direction

- translation invariant in the vertical direction
- period may be assumed to be 1:

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f.

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N
- ▶ Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N
- ▶ Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$

End up with wave-functions $\psi = (\psi_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}; \mathbb{C}^N)$ and Bulk Hamiltonian

$$\left(\frac{H(k)\psi}{n}\right)_n = A(k)\psi_{n-1} + A(k)^*\psi_{n+1} + V_n(k)\psi_n$$

with

$$V_n(k) = V_n(k)^* \in M_N(\mathbb{C})$$
 (potential)
 $A(k) \in GL(N)$ (hopping)

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N
- ▶ Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$

End up with wave-functions $\psi = (\psi_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}; \mathbb{C}^N)$ and Bulk Hamiltonian

$$\left(\frac{H(k)\psi}{n}\right)_n = A(k)\psi_{n-1} + A(k)^*\psi_{n+1} + V_n(k)\psi_n$$

with

$$V_n(k)=V_n(k)^*\in M_N(\mathbb{C})$$
 (potential) $A(k)\in \mathrm{GL}(N)$ (hopping) : Schrödinger eq. is the 2nd order difference equation

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

translation invariant as before (hence Bloch reduction)

Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(H^{\sharp}(k)\psi\right)_{n}=A(k)\psi_{n-1}+A(k)^{*}\psi_{n+1}+V_{n}^{\sharp}(k)\psi_{n}$$

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

▶ translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\mathbf{H}^{\sharp}(k)\psi\right)_{n} = \mathbf{A}(k)\psi_{n-1} + \mathbf{A}(k)^{*}\psi_{n+1} + \mathbf{V}_{n}^{\sharp}(k)\psi_{n}$$

which

 agrees with Bulk Hamiltonian outside of collar near edge (width n₀)

$$V_n^{\sharp}(k) = V_n(k) , \qquad (n > n_0)$$

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

▶ translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\mathbf{H}^{\sharp}(\mathbf{k})\psi\right)_{n} = \mathbf{A}(\mathbf{k})\psi_{n-1} + \mathbf{A}(\mathbf{k})^{*}\psi_{n+1} + \mathbf{V}_{n}^{\sharp}(\mathbf{k})\psi_{n}$$

which

 agrees with Bulk Hamiltonian outside of collar near edge (width n₀)

$$V_n^{\sharp}(k) = V_n(k) , \qquad (n > n_0)$$

▶ has Dirichlet boundary conditions: for n = 1 set $\psi_0 = 0$

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

▶ translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\mathbf{H}^{\sharp}(k)\psi\right)_{n} = \mathbf{A}(k)\psi_{n-1} + \mathbf{A}(k)^{*}\psi_{n+1} + V_{n}^{\sharp}(k)\psi_{n}$$

which

 agrees with Bulk Hamiltonian outside of collar near edge (width n₀)

$$V_n^{\sharp}(k) = V_n(k) , \qquad (n > n_0)$$

▶ has Dirichlet boundary conditions: for n = 1 set $\psi_0 = 0$

Note:
$$\sigma_{\text{ess}}(H^{\sharp}(k)) \subset \sigma_{\text{ess}}(H(k))$$
, but typically $\sigma_{\text{disc}}(H^{\sharp}(k)) \not\subset \sigma_{\text{disc}}(H(k))$

General assumptions

Gap assumption: Fermi energy μ lies in a gap for all k ∈ S¹:

$$\mu \notin \sigma(H(k))$$

General assumptions

▶ Gap assumption: Fermi energy μ lies in a gap for all $k \in S^1$:

$$\mu \notin \sigma(H(k))$$

- ▶ Fermionic time-reversal symmetry: $\Theta : \mathbb{C}^N \to \mathbb{C}^N$
 - ▶ Θ is anti-unitary and $\Theta^2 = -1$;
 - ▶ Θ induces map on $\ell^2(\mathbb{Z}; \mathbb{C}^N)$, pointwise in $n \in \mathbb{Z}$;
 - ▶ For all $k \in S^1$,

$$H(-k) = \Theta H(k)\Theta^{-1}$$

Likewise for $H^{\sharp}(k)$

• $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ▶ Time-reversal invariant points, k = -k, at $k = 0, \pi$.

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ▶ Time-reversal invariant points, k = -k, at $k = 0, \pi$. There

$$H = \Theta H \Theta^{-1}$$
 $(H = H(k) \text{ or } H^{\sharp}(k))$

Hence any eigenvalue is even degenerate (Kramers).

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ▶ Time-reversal invariant points, k = -k, at $k = 0, \pi$. There

$$H = \Theta H \Theta^{-1}$$
 $(H = H(k) \text{ or } H^{\sharp}(k))$

Hence any eigenvalue is even degenerate (Kramers). Indeed

$$H\psi = E\psi \implies H(\Theta\psi) = E(\Theta\psi)$$

and $\Theta \psi = \lambda \psi$, $(\lambda \in \mathbb{C})$ is impossible:

$$-\psi = \Theta^2 \psi = \bar{\lambda} \Theta \psi = \bar{\lambda} \lambda \psi \qquad (\Rightarrow \Leftarrow)$$

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ▶ Time-reversal invariant points, k = -k, at $k = 0, \pi$. There

$$H = \Theta H \Theta^{-1}$$
 $(H = H(k) \text{ or } H^{\sharp}(k))$

Hence any eigenvalue is even degenerate (Kramers).

Bands, Fermi line (one half fat), edge states

Introduction

Rueda de casino

Hamiltonians

Indices

Further results

The edge index

The spectrum of $H^{\sharp}(k)$

symmetric on
$$-\pi \le k \le 0$$

Bands, Fermi line, edge states

Definition: Edge Index

 $\mathcal{I}^{\sharp} = \text{parity of number of eigenvalue crossings}$

The edge index

The spectrum of $H^{\sharp}(k)$

symmetric on
$$-\pi \le k \le 0$$

Bands, Fermi line, edge states

Definition: Edge Index

 $\mathcal{I}^{\sharp} = \text{parity of number of eigenvalue crossings}$

Collapse upper/lower band to a line and fold to a cylinder: Get rueda and its index.

Towards the bulk index

Let $z \in \mathbb{C}$. The Schrödinger equation

$$(H(k)-z)\psi=0$$

(as a 2nd order difference equation) has 2N solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N$.

Towards the bulk index

Let $z \in \mathbb{C}$. The Schrödinger equation

$$(H(k)-z)\psi=0$$

(as a 2nd order difference equation) has 2N solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N$.

Let $z \notin \sigma(H(k))$. Then

$$E_{z,k} = \{ \psi \mid \psi \text{ solution, } \psi_n \to 0, \ (n \to +\infty) \}$$

has

ightharpoonup dim $E_{z,k}=N$.

Towards the bulk index

Let $z \in \mathbb{C}$. The Schrödinger equation

$$(H(k)-z)\psi=0$$

(as a 2nd order difference equation) has 2N solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N$.

Let $z \notin \sigma(H(k))$. Then

$$E_{z,k} = \{ \psi \mid \psi \text{ solution, } \psi_n \to 0, \ (n \to +\infty) \}$$

has

- ightharpoonup dim $E_{z,k}=N$.
- $ightharpoonup E_{\bar{z},-k} = \Theta E_{z,k}$

Vector bundle E with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and $\Theta^2 = -1$.

Vector bundle E with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and $\Theta^2 = -1$.

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Vector bundle E with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and $\Theta^2 = -1$.

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Definition: Bulk Index

$$\mathcal{I} = \mathcal{I}(E)$$

Vector bundle E with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and $\Theta^2 = -1$.

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Definition: Bulk Index

$$\mathcal{I} = \mathcal{I}(E)$$

What's behind the theorem? How is $\mathcal{I}(E)$ defined?

Vector bundle E with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and $\Theta^2 = -1$.

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Definition: Bulk Index

$$\mathcal{I} = \mathcal{I}(E)$$

What's behind the theorem? How is $\mathcal{I}(E)$ defined? Aside ... a rueda ...

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

• torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

▶ a (compatible) section of the frame bundle of E

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

- ▶ a (compatible) section of the frame bundle of E
- ▶ the transition matrices $T(\varphi_2) \in GL(N)$ across the cut

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

- a (compatible) section of the frame bundle of E
- ▶ the transition matrices $T(\varphi_2) \in GL(N)$ across the cut

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 , \qquad (\varphi_2 \in S^1)$$

with $\Theta_0:\mathbb{C}^N o\mathbb{C}^N$ antilinear, $\Theta_0^2=-1$

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

- $\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$
- ▶ Only half the cut $(0 \le \varphi_2 \le \pi)$ matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

- $\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$
- ▶ Only half the cut $(0 \le \varphi_2 \le \pi)$ matters for $T(\varphi_2)$
- ▶ At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda) = T^{-1}(1-\bar{\lambda}T)\Theta_0$$

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

- $\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$
- ▶ Only half the cut $(0 \le \varphi_2 \le \pi)$ matters for $T(\varphi_2)$
- ▶ At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda) = T^{-1}(1-\bar{\lambda}T)\Theta_0$$

Phases $\lambda/|\lambda|$ pair up (Kramers degeneracy)

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

- $\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$
- ▶ Only half the cut $(0 \le \varphi_2 \le \pi)$ matters for $T(\varphi_2)$
- ▶ At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda) = T^{-1}(1-\bar{\lambda}T)\Theta_0$$

Phases $\lambda/|\lambda|$ pair up (Kramers degeneracy)

▶ For $0 \le \varphi_2 \le \pi$, phases $\lambda/|\lambda|$ form a rueda, *D*

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

- $\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$
- ▶ For $0 \le \varphi_2 \le \pi$, phases $\lambda/|\lambda|$ form a rueda, **D**

Definition (Index): $\mathcal{I}(E) := \mathcal{I}(D)$

Remark: $\mathcal{I}(E)$ agrees (in value) with the Pfaffian index of Kane and Mele.

... aside ends here.

Main result

Theorem Bulk and edge indices agree:

$$\mathcal{I}=\mathcal{I}^{\sharp}$$

Main result

Theorem Bulk and edge indices agree:

$$\mathcal{I}=\mathcal{I}^{\sharp}$$

 $\mathcal{I}=+1$: ordinary insulator

 $\mathcal{I} = -1$: topological insulator

Introduction

Rueda de casino

Hamiltonians

Indices

Further results

Further results

- Alternate formulation of bulk index
- Direct link to edge picture
- Application to graphene

So far, only periodicity along edge assumed (quasi-momentum k).

So far, only periodicity along edge assumed (quasi-momentum k). Now: doubly periodic case (quasi-momenta k, κ): Brillouin zone serves as torus

So far, only periodicity along edge assumed (quasi-momentum k). Now: doubly periodic case (quasi-momenta k, κ): Brillouin zone serves as torus

 $k = 0, \pi$:

So far, only periodicity along edge assumed (quasi-momentum k). Now: doubly periodic case (quasi-momenta k, κ): Brillouin zone serves as torus

$$k = 0, \pi$$
:

single bands can not be isolated; but pairs can.

So far, only periodicity along edge assumed (quasi-momentum k). Now: doubly periodic case (quasi-momenta k, κ): Brillouin zone serves as torus

$$k = 0, \pi$$
:

single bands can not be isolated; but pairs can. If so: Bloch solutions for pair (2j-1,2j) form Bloch bundle E_j over Brillouin zone

So far, only periodicity along edge assumed (quasi-momentum k). Now: doubly periodic case (quasi-momenta k, κ): Brillouin zone serves as torus

$$k = 0, \pi$$
:

single bands can not be isolated; but pairs can. If so: Bloch solutions for pair (2j - 1, 2j) form Bloch bundle E_j over Brillouin zone

Theorem

$$\mathcal{I} = \prod_{j} \mathcal{I}(E_{j})$$

with product over filled pairs.

So far, only periodicity along edge assumed (quasi-momentum k). Now: doubly periodic case (quasi-momenta k, κ): Brillouin zone serves as torus

$$k = 0, \pi$$
:

single bands can not be isolated; but pairs can. If so: Bloch solutions for pair (2j - 1, 2j) form Bloch bundle E_j over Brillouin zone

Theorem

$$\mathcal{I} = \prod_{j} \mathcal{I}(E_{j})$$

with product over filled pairs.

Note: Bulk solution are decaying to $n \to +\infty$, Bloch solutions are bounded

So far, only periodicity along edge assumed (quasi-momentum k). Now: doubly periodic case (quasi-momenta k, κ): Brillouin zone serves as torus

$$k = 0, \pi$$
:

single bands can not be isolated; but pairs can. If so: Bloch solutions for pair (2j - 1, 2j) form Bloch bundle E_j over Brillouin zone

Theorem

$$\mathcal{I} = \prod_{i} \mathcal{I}(E_{j})$$

with product over filled pairs.

Note: Bulk solution are decaying to $n \to +\infty$, Bloch solutions are bounded

Proof using Bloch variety (Kohn)

A direct link to the edge

A direct link between indices of Bloch bundles and the edge index.

A direct link between indices of Bloch bundles and the edge index. Simpler setting: Quantum Hall effect.

Definition: Edge Index

 $\mathcal{N}^{\sharp} = \text{signed number of eigenvalue crossings}$

A direct link between indices of Bloch bundles and the edge index. Simpler setting: Quantum Hall effect.

Definition: Edge Index

 $\mathcal{N}^{\sharp} = \text{signed number of eigenvalue crossings}$

Bulk: $ch(E_j)$ is the Chern number of the Bloch bundle E_j of the j-th band.

A direct link between indices of Bloch bundles and the edge index. Simpler setting: Quantum Hall effect.

Definition: Edge Index

 $\mathcal{N}^{\sharp}=$ signed number of eigenvalue crossings

Bulk: $ch(E_j)$ is the Chern number of the Bloch bundle E_j of the j-th band.

Duality:

$$\mathcal{N}^{\sharp} = \sum_{j} \operatorname{ch}(E_{j})$$

with sum over filled bands.

A direct link between indices of Bloch bundles and the edge index. Simpler setting: Quantum Hall effect.

Definition: Edge Index

 $\mathcal{N}^{\sharp}=$ signed number of eigenvalue crossings

Bulk: $ch(E_j)$ is the Chern number of the Bloch bundle E_j of the j-th band.

Duality:

$$\mathcal{N}^{\sharp} = \sum_{j} \operatorname{ch}(E_{j})$$

with sum over filled bands.

(cf. Hatsugai) Here via scattering and Levinson's theorem.

Brillouin zone $\ni (\kappa, k)$ Energy band $\varepsilon_j(\kappa, k)$

Minima $\kappa_{-}(k)$ and maxima $\kappa_{+}(k)$ of energy band $\varepsilon_{j}(\kappa, k)$ in κ at fixed k

Minima $\kappa_{-}(k)$ and maxima $\kappa_{+}(k)$ of energy band $\varepsilon_{j}(\kappa, k)$ in κ at fixed k

Minima $\kappa_{-}(k)$ and maxima $\kappa_{+}(k)$ of energy band $\varepsilon_{j}(\kappa, k)$ in κ at fixed k

Maxima $\kappa_+(k)$ with semi-bound states (to be explained)

At fixed k: Energy band $\varepsilon_j(\kappa, k)$ and the line bundle E_j of Bloch states

Line indicates choice of a section $|\kappa\rangle$ of Bloch states (from the given band). No global section in $\kappa \in \mathbb{R}/2\pi\mathbb{Z}$ is possible, as a rule.

States $|\kappa\rangle$ above the solid line are left movers $(\varepsilon_j'(\kappa) < 0)$

They are incoming asymptotic (bulk) states for scattering at edge (from inside)

Scattering determines section |out of right movers above line

Scattering matrix

$$|{
m out}
angle=\mathcal{S}_+|\kappa
angle$$

as relative phase between two sections of the same fiber (near κ_+)

Scattering matrix

$$|\mathrm{out}\rangle = \mathcal{S}_+ |\kappa\rangle$$

as relative phase between two sections of the same fiber (near $\kappa_+)$

Likewise S_{-} near κ_{-} .

Chern number computed by sewing

$$\mathrm{ch}(E_j) = \mathcal{N}(S_+) - \mathcal{N}(S_-)$$

with $\mathcal{N}(S_{\pm})$ the winding of $S_{\pm} = S_{\pm}(k)$ as $k = 0 \dots \pi$.

As $\kappa \to \kappa_+$, whence

$$|{
m in}\rangle=|\kappa
angle o |\kappa_+
angle \qquad |{
m out}
angle = \mathcal{S}_+|\kappa
angle o |\kappa_+
angle ext{ (up to phase)}$$

their limiting span is that of

$$|\kappa_{+}\rangle, \quad \frac{\mathsf{d}|\kappa\rangle}{\mathsf{d}\kappa}\Big|_{\kappa_{+}}$$

(bounded, resp. unbounded in space). The span contains the limiting scattering state $|\psi\rangle \propto |\text{in}\rangle + |\text{out}\rangle$.

If (exceptionally) $|\psi\rangle\propto |\kappa_+\rangle$ then $|\psi\rangle$ is a semi-bound state.

As a function of k, semi-bound states occur exceptionally.

Levinson's theorem

Recall from two-body potential scattering: The scattering phase at threshold equals the number of bound states

$$\sigma(p^2 + V)$$

$$\bullet \quad \bullet \bullet 0$$

$$\arg S|_{E=0+} = 2\pi N$$

Levinson's theorem

Recall from two-body potential scattering: The scattering phase at threshold equals the number of bound states

N changes with the potential V when bound state reaches threshold (semi-bound state \equiv incipient bound state)

Levinson's theorem (relative version)

Spectrum of edge Hamiltonian

Levinson's theorem (relative version)

Spectrum of edge Hamiltonian

$$\lim_{\delta \to 0} \arg S_{+}(\varepsilon(k) - \delta) \Big|_{k_{1}}^{k_{2}} = \pm 2\pi$$

Proof

$$\mathcal{N}^{\sharp} = \mathcal{N}(S_{+}^{(j_0)}) \quad \left(= \mathcal{N}(S_{-}^{(j_0+1)})\right)$$

$$= \sum_{j=0}^{j_0} \mathcal{N}(S_{+}^{(j)}) - \mathcal{N}(S_{-}^{(j)})$$

$$= \sum_{j=0}^{j_0} \operatorname{ch}(E_j)$$

$$(\mathcal{N}(\mathcal{S}_{-}^{(1)})=0)$$

Hamiltonian: Nearest neighbor hopping with flux Φ per plaquette.

Spectrum in black

Spectrum in black

What is the Hall conductance (Chern number) in any white point?

What is the Hall conductance (Chern number) s in any white point?

Bulk approach (Thouless): If $\Phi = p/q$, (p, q coprime) then

$$r = sp + tq$$

where:

- r number of bands below Fermi energy
- ▶ s, t integers

s is so determined only modulo q.

What is the Hall conductance (Chern number) s in any white point?

Bulk approach (Thouless): If $\Phi = p/q$, (p, q coprime) then

$$r = sp + tq$$

where:

- r number of bands below Fermi energy
- ▶ s, t integers

s is so determined only modulo *q*.

For square lattice, $s \in (-q/2, q/2)$.

What is the Hall conductance (Chern number) s in any white point?

Bulk approach (Thouless): If $\Phi = p/q$, (p, q coprime) then

$$r = sp + tq$$

where:

- r number of bands below Fermi energy
- **s**, *t* integers

s is so determined only modulo *q*.

For square lattice, $s \in (-q/2, q/2)$. Not for other lattices.

What is the Hall conductance (Chern number) s in any white point?

Bulk approach (Thouless): If $\Phi = p/q$, (p, q coprime) then

$$r = sp + tq$$

where:

- r number of bands below Fermi energy
- **s**, *t* integers

s is so determined only modulo q.

For square lattice, $s \in (-q/2, q/2)$. Not for other lattices.

→ Edge approach (with Agazzi, Eckmann), method by Schulz-Baldes et al.

The colors of graphene

What is the Hall conductance (Chern number) in any white point?

The colors of graphene

What is the Hall conductance (Chern number) in any white

Summary

Bulk = Edge

 $\mathcal{I}=\mathcal{I}^{\sharp}$

Summary

$$\mathcal{I} = \mathcal{I}^{\sharp}$$

- The bulk and the indices of a topological insulator (of reduced symmetry) are indices of suitable ruedas
- In case of full translational symmetry, bulk index can be defined and linked to edge in other ways
- Application (Quantum Hall): graphene
- Three dimensions ...
- Open questions: No periodicity (disordered case)?