
Bulk-edge duality for topological insulators

Gian Michele Graf
ETH Zurich
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Topological insulators: first impressions

I Insulator in the Bulk: Excitation gap
For independent electrons: band gap at Fermi energy

I Time-reversal invariant fermionic system

spin down

E
dg

e

void Bulk

spin up

E
dg

e

void

I Topology: In the space of Hamiltonians, a topological
insulator can not be deformed in an ordinary one, while
keeping the gap open and time-reversal invariance.
Analogy: torus 6= sphere (differ by genus).

Contributors to the field: Kane, Mele, Zhang, Moore; Fröhlich;
Hasan
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Pictures

Material: InAs/GaSb (quantum well); AlSb (barrier)

Courtesy: S. Müller, K. Ensslin
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Bulk-edge correspondence

Deformation as interpolation in physical space:
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topological insulator ordinary insulatorinterpolating material

I Gap must close somewhere in between. Hence: Interface
states at Fermi energy.

I Ordinary insulator void: Edge states
I Bulk-edge correspondence: Termination of bulk of a

topological insulator implies edge states. (But not
conversely!)
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Bulk-edge correspondence

E
dg

e

void Bulk

In a nutshell: Termination of bulk of a topological insulator
implies edge states

I Goal: State the (intrinsic) topological property
distinguishing different classes of insulators.

More precisely:
I Express that property as an Index relating to the Bulk,

resp. to the Edge.
I Bulk-edge duality: Can it be shown that the two indices

agree?
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Bulk-edge correspondence. Done?

E
dg

e

void Bulk

In a nutshell: Termination of bulk of a topological insulator
implies edge states
I Goal: State the (intrinsic) topological property

distinguishing different classes of insulators.
More precisely:
I Express that property as an Index relating to the Bulk,

resp. to the Edge. Yes, e.g. Kane and Mele.
I Bulk-edge duality: Can it be shown that the two indices

agree? Schulz-Baldes et al.; Essin & Gurarie



Bulk-edge correspondence. Today

E
dg

e

void Bulk

In a nutshell: Termination of bulk of a topological insulator
implies edge states
I Goal: State the (intrinsic) topological property

distinguishing different classes of insulators.
More precisely:
I Express that property as an Index relating to the Bulk,

resp. to the Edge. Done differently.
I Bulk-edge duality: Can it be shown that the two indices

agree? Done differently.
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Rules of the dance

Dancers
I start in pairs, anywhere
I end in pairs, anywhere (possibly elseways & elsewhere)
I are free in between
I must never step on center of the floor

I are unlabeled points
There are dances which can not be deformed into one another.

What is the index that makes the difference?
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The index of a Rueda

A snapshot of the dance

Dance D as a whole

D

I(D) = parity of number of crossings of fiducial line
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Bulk Hamiltonian
Hamiltonian on the lattice Z× Z (plane)

Z

Z

−2 −1 0 1n = −3 2 3 4

I translation invariant in the vertical direction
I period may be assumed to be 1: sites within a period as

labels of internal d.o.f., along with others (spin, . . . ),
totalling N

I Bloch reduction by quasi-momentum k ∈ S1 := R/2πZ
End up with wave-functions ψ = (ψn)n∈Z ∈ `2(Z;CN) and Bulk
Hamiltonian(

H(k)ψ
)

n = A(k)ψn−1 + A(k)∗ψn+1 + Vn(k)ψn

with
Vn(k) = Vn(k)∗ ∈ MN(C) (potential)
A(k) ∈ GL(N) (hopping) : Schrödinger eq. is the 2nd order
difference equation
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Edge Hamiltonian
Hamiltonian on the lattice N× Z (half-plane) with N = {1,2, . . .}

N

Z

0 1n = 2 3 4

I translation invariant as before (hence Bloch reduction)
Wave-functions ψ ∈ `2(N;CN) and Edge Hamiltonian(

H](k)ψ
)

n = A(k)ψn−1 + A(k)∗ψn+1 + V ]
n(k)ψn

which
I agrees with Bulk Hamiltonian outside of collar near edge

(width n0)
V ]

n(k) = Vn(k) , (n > n0)

I has Dirichlet boundary conditions: for n = 1 set ψ0 = 0
Note: σess(H](k)) ⊂ σess(H(k)), but typically
σdisc(H](k)) 6⊂ σdisc(H(k))
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General assumptions

I Gap assumption: Fermi energy µ lies in a gap for all
k ∈ S1:

µ /∈ σ(H(k))

I Fermionic time-reversal symmetry: Θ : CN → CN

I Θ is anti-unitary and Θ2 = −1;
I Θ induces map on `2(Z;CN), pointwise in n ∈ Z;
I For all k ∈ S1,

H(−k) = ΘH(k)Θ−1

Likewise for H](k)
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Elementary consequences of H(−k) = ΘH(k)Θ−1

I σ(H(k)) = σ(H(−k)). Same for H](k).

I Time-reversal invariant points, k = −k , at k = 0, π. There

H = ΘHΘ−1 (H = H(k) or H](k))

Hence any eigenvalue is even degenerate (Kramers).

E ∈ R0

π

−π

k ∈ S1

µ

Bands, Fermi line (one half fat), edge states
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The edge index

The spectrum of H](k)
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µ

k

symmetric on −π ≤ k ≤ 0

0 π

Bands, Fermi line, edge states

Definition: Edge Index

I] = parity of number of eigenvalue crossings

Collapse upper/lower band to a line and fold to a cylinder: Get
rueda and its index.
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I] = parity of number of eigenvalue crossings

Collapse upper/lower band to a line and fold to a cylinder: Get
rueda and its index.



Towards the bulk index

Let z ∈ C. The Schrödinger equation

(H(k)− z)ψ = 0

(as a 2nd order difference equation) has 2N solutions
ψ = (ψn)n∈Z, ψn ∈ CN .

Let z /∈ σ(H(k)). Then

Ez,k = {ψ | ψ solution, ψn → 0, (n→ +∞)}

has
I dim Ez,k = N.

I Ez̄,−k = ΘEz,k
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The bulk index

0

π

−π

k ∈ S1

µ E = Re z

Im z

Loop γ and torus T = γ × S1

Vector bundle E with base T 3 (z, k), fibers Ez,k , and Θ2 = −1.

Theorem In general, vector bundles (E ,T,Θ) can be classified
by an index I(E) = ±1 (besides of N = dim E)

Definition: Bulk Index
I = I(E)

What’s behind the theorem? How is I(E) defined? Aside . . . a rueda . . .
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Time-reversal invariant bundles on the torus
Theorem In general, vector bundles (E ,T,Θ) can be classified
by an index I(E) = ±1

Sketch of proof: Consider
I torus ϕ = (ϕ1, ϕ2) ∈ T = (R/2πZ)2 with cut (figure)

cu
t

ϕ2 = 0ϕ2 = πϕ1

ϕ2

ϕ2

−ϕ2

I a (compatible) section of the frame bundle of E
I the transition matrices T (ϕ2) ∈ GL(N) across the cut

Θ0T (ϕ2) = T−1(−ϕ2)Θ0 , (ϕ2 ∈ S1)

with Θ0 : CN → CN antilinear, Θ2
0 = −1
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Time-reversal invariant bundles on the torus
Theorem In general, vector bundles (E ,T,Θ) can be classified
by an index I(E) = ±1

ϕ2 = 0ϕ2 = π

ϕ2

−ϕ2

I Θ0T (ϕ2) = T−1(−ϕ2)Θ0
I Only half the cut (0 ≤ ϕ2 ≤ π) matters for T (ϕ2)
I At time-reversal invariant points, ϕ2 = 0, π,

Θ0T = T−1Θ0

Eigenvalues of T come in pairs λ, λ̄−1:

Θ0(T − λ) = T−1(1− λ̄T )Θ0

Phases λ/|λ| pair up (Kramers degeneracy)
I For 0 ≤ ϕ2 ≤ π, phases λ/|λ| form a rueda, D

Definition (Index): I(E) := I(D)

Remark: I(E) agrees (in value) with the Pfaffian index of Kane and Mele.

. . . aside ends here.
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Main result

Theorem Bulk and edge indices agree:

I = I]

I = +1: ordinary insulator
I = −1: topological insulator
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Further results

I Alternate formulation of bulk index
I Direct link to edge picture
I Application to graphene



Alternate formulation of bulk index
So far, only periodicity along edge assumed (quasi-momentum
k ).

Now: doubly periodic case (quasi-momenta k , κ): Brillouin
zone serves as torus

k = 0, π:

−π 0 π

ε2j−1(κ)

ε2j (κ)

κ

ε single bands can not be
isolated; but pairs can.
If so: Bloch solutions for pair
(2j − 1,2j) form Bloch
bundle Ej over Brillouin zone

Theorem
I =

∏
j

I(Ej)

with product over filled pairs.

Note: Bulk solution are decaying to n→ +∞, Bloch solutions
are bounded
Proof using Bloch variety (Kohn)
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A direct link to the edge

A direct link between indices of Bloch bundles and the edge
index.

Simpler setting: Quantum Hall effect.

Definition: Edge Index

N ] = signed number of eigenvalue crossings

Bulk: ch(Ej) is the Chern number of the Bloch bundle Ej of the
j-th band.

Duality:
N ] =

∑
j

ch(Ej)

with sum over filled bands.

(cf. Hatsugai) Here via scattering and Levinson’s theorem.
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Duality via scattering

κ

k

Brillouin zone 3 (κ, k)
Energy band εj(κ, k)
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κ+

Maxima κ+(k) with semi-bound
states (to be explained)
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Duality via scattering

��������������−π
κ

π

εj (κ)

At fixed k : Energy band εj(κ, k) and
the line bundle Ej of Bloch states



Duality via scattering

��������������−π
κ

π

Line indicates choice of a section |κ〉
of Bloch states (from the given
band). No global section in
κ ∈ R/2πZ is possible, as a rule.
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States |κ〉 above the solid line are
left movers (ε′j(κ) < 0)
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states for scattering at edge (from
inside)
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|out〉

Scattering matrix

|out〉 = S+|κ〉

as relative phase between two
sections of the same fiber (near κ+)
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|κ〉 ≡ |in〉

|out〉

Scattering matrix

|out〉 = S+|κ〉

as relative phase between two
sections of the same fiber (near κ+)

Likewise S− near κ−.
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Chern number computed by sewing

ch(Ej) = N (S+)−N (S−)

with N (S±) the winding of
S± = S±(k) as k = 0 . . . π.
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As κ→ κ+, whence

|in〉 = |κ〉 → |κ+〉 |out〉 = S+|κ〉 → |κ+〉 (up to phase)

their limiting span is that of

|κ+〉,
d |κ〉
dκ

∣∣∣
κ+

(bounded, resp. unbounded in space). The span contains the
limiting scattering state |ψ〉 ∝ |in〉+ |out〉.

If (exceptionally) |ψ〉 ∝ |κ+〉 then |ψ〉 is a semi-bound state.



Duality via scattering
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As a function of k , semi-bound states occur exceptionally.



Levinson’s theorem

Recall from two-body potential scattering: The scattering phase
at threshold equals the number of bound states

0 E

σ(p2 + V )

arg S
∣∣
E=0+

= 2πN

N changes with the potential V when bound state reaches
threshold (semi-bound state ≡ incipient bound state)
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Levinson’s theorem (relative version)

Spectrum of edge Hamiltonian
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k∗ k

ε(k) = εj(κ+(k), k)

lim
δ→0

arg S+(ε(k)− δ)
∣∣∣k2

k1
= ±2π



Levinson’s theorem (relative version)

Spectrum of edge Hamiltonian
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k∗ k

ε(k) = εj(κ+(k), k)
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lim
δ→0

arg S+(ε(k)− δ)
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= ±2π



Proof
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µ

k π−π

j0 + 1

j0

N ] = N (S(j0)
+ )

(
= N (S(j0+1)

− )
)

=

j0∑
j=0

N (S(j)
+ )−N (S(j)

− )

=

j0∑
j=0

ch(Ej)

(N (S(1)
− ) = 0)



An application: Quantum Hall in graphene



An application: Quantum Hall in graphene
Hamiltonian: Nearest neighbor hopping with flux Φ per
plaquette.

Spectrum in black

E

Φ (mod 2π)

What is the Hall conductance (Chern number) in any white
point?
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An application: Quantum Hall in graphene

What is the Hall conductance (Chern number) s in any white
point?

Bulk approach (Thouless): If Φ = p/q, (p, q coprime) then

r = sp + tq

where:
I r number of bands below Fermi energy
I s, t integers

s is so determined only modulo q.

For square lattice, s ∈ (−q/2,q/2). Not for other lattices.

→ Edge approach (with Agazzi, Eckmann), method by
Schulz-Baldes et al.
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The colors of graphene

What is the Hall conductance (Chern number) in any white
point?
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Summary

Bulk = Edge

I = I]



Summary

Bulk = Edge

I = I]

I The bulk and the indices of a topological insulator (of
reduced symmetry) are indices of suitable ruedas

I In case of full translational symmetry, bulk index can be
defined and linked to edge in other ways

I Application (Quantum Hall): graphene
I Three dimensions ...
I Open questions: No periodicity (disordered case)?
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