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1 The wave equation on the De Sitter Kerr metric
1.1 De Sitter Kerr metric in Boyer-Lindquist coordinates
MBH = Rt × Rr × S2

ω, with spacetime metric

g =
∆r − a2 sin2 θ∆θ

λ2ρ2 dt2 +
2a sin2 θ((r 2 + a2)2∆θ − a2 sin2 θ∆r )

λ2ρ2 dtdϕ

− ρ2

∆r
dr 2 − ρ2

∆θ
dθ2 − sin2 θσ2

λ2ρ2 dϕ2,

ρ2 = r 2 + a2 cos2 θ, ∆r =

(
1− Λ

3
r 2
)

(r 2 + a2)− 2Mr ,

∆θ = 1 +
1
3

Λa2 cos2 θ, σ2 = (r 2 + a2)2∆θ − a2∆r sin2 θ, λ = 1 +
1
3

Λa2.

Λ > 0: cosmological constant, M > 0 : masse, a : angular momentum
per unit masse.

I ρ2 = 0 is a curvature singularity, ∆r = 0 are coordinate singularities.
∆r > 0 on some open interval r− < r < r+. r = r−: black hole
horizon, r = r+ cosmological horizon.

I ∂ϕ and ∂t are Killing. There exist r1(θ), r2(θ) s. t. ∂t is
I timelike on {(t , r , θ, ϕ) : r1(θ) < r < r2(θ)},
I spacelike on

{(t , r , θ, ϕ) : r− < r < r1(θ)}∪{(t , r , θ, ϕ : r2(θ) < r < r+} =: E−∪E+.

The regions E−, E+ are called ergospheres.



1.2 The wave equation on the De Sitter Kerr metric
We now consider the unitary transform

U :
L2(M; σ2

∆r ∆θ
drdω) → L2(M; drdω)

ψ 7→ σ√
∆r ∆θ

ψ

If ψ fulfills (2g + m2)ψ = 0, then u = Uψ fulfills

(∂2
t − 2ik∂t + h)u = 0.(1)

with

k =
a(∆r − (r 2 + a2)∆θ)

σ2 Dϕ,

h = − (∆r − a2 sin2 θ∆θ)

sin2 θσ2
∂2
ϕ −
√

∆r ∆θ

λσ
∂r ∆r∂r

√
∆r ∆θ

λσ

−
√

∆r ∆θ

λ sin θσ
∂θ sin θ∆θ∂θ

√
∆r ∆θ

λσ
+
ρ2∆r ∆θ

λ2σ2 m2.

h is not positive inside the ergospheres. This entails that the natural
conserved quantity

Ẽ(u) = ‖∂tu‖2 + (hu|u)

is not positive.



1.3 3+1 decomposition, energies, Killing fields
Let v = e−iktu. Then u is solution of (1) if and only if v is solution of

(∂2
t + h(t))v = 0, h(t) = e−ikth0eikt , h0 = h + k2 ≥ 0.

Natural energy :
‖∂tv‖2 + (h(t)v |v).

Rewriting for u:
Ė(u) = ‖(∂t − ik)u‖2 + (h0u|u).

This energy is positive, but may grow in time→ superradiance.

Remark
k = ΩDϕ and Ω has finite limits Ωl/r when r → r∓. These limits are
called angular velocities of the horizons. The Killing fields ∂t − Ωl/r∂ϕ on
the De Sitter Kerr metric are timelike close to the black hole (l) resp.
cosmological (r) horizon. Working with these Killing fields rather than
with ∂t leads to the conserved energies :

Ẽl/r (u) = ‖(∂t − Ωl/r∂ϕ)u‖2 + (h0 − (k − Ωl/r Dϕ)2u|u).

Note that in the limit k → Ωl/r Dϕ the expressions of Ė(u) and Ẽl/r (u)
coincide.



1.4 Asymptotic dynamics

Regge-Wheeler type coordinate dx
dr = r2+a2

∆r
.

x ± t = const . along principal null geodesics.

Unitary transform:

V :
L2(R(r−,r+) × S2) → L2(R× S2, dxdω),

v(r , ω) 7→
√

∆r
r2+a2 v(r(x), ω).

Asymptotic equations :

(∂2
t − 2Ωl/r∂ϕ∂t + hl/r )ul/r = 0,(2)

hl/r = Ω2
l/r∂

2
ϕ − ∂2

x .

The conserved quantities :

‖(∂t − iΩl/r Dϕ)ul/r‖2 + ((hl/r − Ω2
l/r∂

2
ϕ)ul/r |ul/r )

= ‖(∂t − iΩl/r Dϕ)ul/r‖2 + (−∂2
x ul/r |ul/r )

are positive.

Question : Can we compare the solutions of (1) to solutions of (2) for
large times ?



1.5 Previous work

a) Scattering theory without positive conserved energy

Kako, C. Gérard, Georgescu-Gérard-H.

b) Superradiance

Bachelot (d=1).

c) Scattering theory on Kerr

H, H-Nicolas

d) Decay of the local energy on (De Sitter) Kerr spacetimes

Andersson-Blue, Bony-H (a = 0) , Dafermos-Rodnianski, Dyatlov,
Finster-Kamran-Smoller-Yau,Tataru-Tohaneanu, Vasy, Zworski-Sa
Barreto (a = 0),...

e) Hawking effect

Bachelot (a = 0),... , H (fermions, a 6= 0)



2.1The abstract equation

H Hilbert space. h, k selfadjoint, k ∈ B(H). (∂2
t − 2ik∂t + h)u = 0,

u|t=0 = u0,
∂tu|t=0 = u1.

(3)

Hyperbolic equation

(A1) h0 := h + k2 ≥ 0.

Formally u = eiztv solution if and only if

p(z)v = 0

with p(z) = h0 − (k − z)2 = h + z(2k − z), z ∈ C. p(z) is called the
quadratic pencil.

Conserved quantities

〈u|u〉` := ‖u1 − `u0‖2 + (p(`)u0|u0),

where p(`) = h0 − (k − `)2. Conserved by the evolution, but in general
not positive definite, because none of the operators p(`) is in general
positive.



2.2 Spaces
Hi : scale of Sobolev spaces associated to h0.
(A2)

0 /∈ σpp(h0); k , h1/2
0 kh−1/2

0 ∈ B(H);

∀z ∈ C \ R, ‖(k − z)−1‖B(h−1/2
0 H)

. |Imz|−K0 , K0 > 0.

∃M0 > 0, ∀|z| ≥ M0‖k‖B(H), ‖(k − z)−1‖B(h−1/2
0 H)

. 1
|z|−‖k‖B(H)

.

Homogeneous energy spaces

Ė = Φ(k)h−1/2
0 H⊕H, Ė∗ = Φ(k)H⊕ h1/2

0 H, Φ(k) =

(
1l 0
k 1l

)
.

where Ė is equipped with the norm
‖(u0, u1)‖2

Ė = ‖u1 − ku0‖2 + (h0u0|u0). We identify Ė∗ with the dual of Ė
with the help of the charge 〈.|.〉 = (u0|v1 − kv0) + (u1 − ku0|v0).

Lemma

For all ` ∈ R, 〈.|.〉` is continuous with respect to the norm ‖.‖Ė if and only
if h0 & (k − `)2 in the sense of quadratic forms on D(h0).

Remark
In the case of the De Sitter Kerr metric this condition is not fulfilled.



2.3 Energy Klein Gordon operators

ψ = (u,
1
i
∂tu), (∂t − iH)ψ = 0, H =

(
0 1l
h 2k

)
,

(H − z)−1 = p−1(z)

(
z − 2k 1l

h z

)
,

ρ(h, k) := {z ∈ C | p(z) : 〈h0〉−
1
2H→̃〈h0〉

1
2H}.

Klein Gordon operator on the homogeneous energy space

D(Ḣ) = Φ(k)((h−1/2
0 H ∩ h−1

0 H)⊕ 〈h0〉−1/2H),

∃C0 > 0, ρ(Ḣ) ∩ (C \ (−C0,C0)) = ρ(h, k) ∩ (C \ (−C0,C0)),

Ṙ(z) := (Ḣ − z)−1.

Gauge transformations

v = e−it`u (∂t − ik)2u + h0u = 0⇔ (∂t − i(k − `))2v + h0v = 0.

Φ(`)HΦ−1(`) =: H` + `1l,

H` =

(
0 1l

p(`) 2(k − `)

)
, p(`) = h0 − (k − `)2.



2.4 Basic resolvent estimates and existence of the dynamics

Lemma (Basic resolvent estimates)

Let ε > 0. We have

‖p−1(z)u‖ . |z|−1|Imz|−1‖u‖,
‖h1/2

0 p−1(z)u‖ . |Imz|−1‖u‖.

uniformly in |z| ≥ (1 + ε)‖k‖B(H), |Imz| > 0.

Remark
i) Interpretation : superradiance does not occur for |z| ≥ (1 + ε)‖k‖.
ii) Explanation : p(z) = h0 − (k − z)2, h0 ≥ 0.

Lemma (Existence of the dynamics)

(Ḣ,D(Ḣ)) is the generator of a C0− group e−itḢ on Ė .



3 Meromorphic extensions
3.1 Background

Definition
Let H be a Hilbert space. Let U be a neighborhood of z0 ∈ C, and let
F : U \ {z0} → B(H) be a holomorphic function. F is finite meromorphic
at z0 if in the Laurent expansion F (z) =

∑+∞
n=m(z − z0)nAn, m > −∞,

the operators Am, ...,A−1 are of finite rank for m < 0. If in addition A0 is a
Fredholm operator, then F is called Fredholm at z0.

Proposition

Let D ⊂ C be a connected open set, let Z ⊂ D be a discrete and closed
subset of D, and let F : D → B(H) be a holomorphic function on D \ Z.
Assume that

I F is finite meromorphic and Fredholm at each point of D;
I there exists z0 ∈ D \ Z such that F (z0) is invertible.

Then there exists a discrete closed subset Z ′ of D such that Z ⊂ Z ′

and :
I F (z) is invertible for z ∈ D \ Z ′;
I F−1 : D \ Z ′ → B(H) is finite meromorphic on D and Fredholm at

each point of D.



3.2 Meromorphic extensions of weighted resolvents

Assumptions

(A3) h ≥ 0, 0 /∈ σpp(h), ∀u ∈ D(h1/2), ‖ku‖ . ‖h1/2u‖.

(w ,D(w)) selfadjoint.
(ME1)

a) wkw ∈ B(H).
b) [k ,w ] = 0.
c) h−1/2[h,w−ε]wε/2, [h,w−ε]wε/2h−1/2, [h,w−ε]h−1/2 ∈ B(H), ∀ε > 0,
d) ∀ε > 0, ‖w−εu‖ . ‖h1/2u‖, ∀u ∈ h−1/2H,
e) w−ε〈h〉−ε̃ ∈ B∞(H), ∀ε, ε̃ > 0.

(ME2)
For all ε > 0, w−ε(h − z2)−1w−ε extends from Imz > 0 to Imz > −δε, δε > 0

as a finite meromorphic function with values in B∞(H).

Proposition

Assume (A1)-(A3), (ME1)-(ME2). Then w−εṘ(z)w−ε extends finite
meromorphically to Imz > −δε/2 as an operator valued function with
values in B∞(Ė).



4 Klein-Gordon operators with “two ends”

4.1 Assumptions

(x ,D(x)) selfadjoint, σ(x) = σac(x) = R, [k , x ] = 0. Let
χi ∈ C∞b (R), i = 1, 2, suppχ1 ∩ suppχ2 = ∅. We suppose

(TE1)


w = w(x), w ∈ C∞(R),

[x , k ] = 0,
χ1(x)h0χ2(x) = 0.

j- j+
i- i+

1

x

y


k± = k ∓ `j2

∓,

h± = h0 − k2
±

h̃− = h− + 2`k− − `2 = h0 − (`− k−)2.

(TE2)
There exists ` ∈ R, ε > 0 such that (h+, k+), (h̃−, k− − `) satisfy (A3).

p±(z) := h± + z(2k± − z).

Note that h̃− = p−(`).



4.2 Asymptotic Hamiltonians

Ė+ = h−1/2
+ H⊕H, Ė− = Φ(`)h̃−1/2

− H⊕H.

Ḣ± =

(
0 1l

h± 2k±

)
.

are selfadjoint. We note Ṙ±(z) := (Ḣ± − z)−1.
(TE3)

a) wi+ki+w , wi−(k − `)i−w ∈ B(H),

b) [h, i±] = ĩ[h, i± ]̃i ,
c) (h+, k+,w) and (h̃−, k− − `,w) fulfill (ME1), (ME2),
d) h1/2

± i±h−1/2
± , h1/2

0 i±h−1/2
0 ∈ B(H),

e) w [h, i±]wh−1/2
± , w [h, i±]wh−1/2

0 , [h, i±]h−1/2
± ,

[h, i±]h−1/2
0 , h−1/2

0 [w−1, h0]w ∈ B(H),
f ) (h0,w) fulfill (ME1)d).

Proposition

Let ε > 0. Then w−εṘ±(z)w−ε extends finite meromorphically to
Imz > −δε/2 as an operator valued function with values in B(Ė±).



4.3 Construction of the resolvent
Proposition

If the conditions (A1)-(A2) and (TE1)-(TE3) are satisfied then there is a
finite set Z ⊂ C \ R with Z = Z such that the spectra of H and Ḣ are
included in R ∪ Z and such that the resolvents R and Ṙ are finite
meromorphic functions on C \ R. Moreover, the point spectrum of H
coincides with the point spectrum of Ḣ and the set Z consists of
eigenvalues of finite multiplicity of H and Ḣ.

Proof.
Q(z) := i−(Ḣ− − z)−1i− + i+(Ḣ+ − z)−1i+.

(Ḣ − z)Q(z) = 1l + [Ḣ, i−](Ḣ− − z)−1i− + [Ḣ, i+](Ḣ+ − z)−1i+
= 1l + K−(z) + K+(z) = 1 + K (z).

1 + K (z) = (1 + K−(z)j− + K+j+)

× (1 + K−(z)(1− j−) + K+(z)(1− j+)),

(1 + K−(z)j− + K+(z)j+)−1 = 1− K−(z)j− − K+(z)j+.

Thus Ṙ(z) := Q(z)(1 + K (z))−1

= Q(z)(1 + K−(z)(1− j−) + K+(1− j+))−1

× (1− K−(z)j− − K+j+).



4.4 Smooth functional calculus

‖f‖m := sup
λ∈R, α≤m

|f (α)(λ)|.

Proposition

Assume (A1), (A2), (TE1)-(TE3).
(i) Let f ∈ C∞0 (R). Let f̃ be an almost analytic extension of f such that
supp f̃ ∩ σC

pp(Ḣ) = ∅. Then the integral
f (Ḣ) := 1

2πi

∫
C
∂ f̃
∂z (z)Ṙ(z)dz ∧ dz

is norm convergent in B(Ė) and independent of the choice of the almost
analytic extension of f .
(ii) The map C∞0 (R) 3 f 7→ f (Ḣ) ∈ B(Ė) is a homomorphism of algebras
with
f (Ḣ)∗ = f (Ḣ∗), ‖f (Ḣ)‖B(Ė) ≤ ‖f‖m for some m ∈ N.

Proposition

Assume σC
pp(Ḣ) = ∅. Let χ ∈ C∞0 (R), χ ≡ 1 in a neighborhood of zero.

Then s − limL→∞ χ
(

Ḣ
L

)
= 1l.



5.1 Resonances and boundary values of the resolvent
Lemma

w−εṘ(z)w−ε can be extended meromorphically from the upper half
plane to Imz > −δε, δε > 0 with values in B∞(Ė). poles: resonances.

We have w−εṘ(z)w−ε = (1l + Aw (z))−1w−εQ(z)w−ε.

Proposition

Assume (A1)-(A2), (TE1)-(TE3). Let ε > 0. There exists a discrete
closed set ṪH ⊂ R, ν > 0 such that for all χ ∈ C∞0 (R \ ṪH) we have
(4)

sup
‖u‖Ė=1, ν≥δ>0

∫
R

(‖w−εṘ(λ+iδ)χ(Ḣ)u‖2
Ė+‖w−εṘ(λ−iδ)χ(Ḣ)u‖2

Ė)dλ <∞.

Definition

We call λ ∈ R a regular point of Ḣ if there exists χ ∈ C∞0 (R), χ(λ) = 1
such that (4) holds. Otherwise we call it a singular point.

Remark

Note that in the selfadjoint case ṪH is the set of real resonances by
Kato’s theory of H-smoothness.



5.2 Propagation estimates
Proposition

Assume (A1)-(A2), (TE1)-(TE3). Let ε > 0. Then there exists a discrete
closed set Ṫ ⊂ R such that for all χ ∈ C∞0 (R \ Ṫ ) and all k ∈ N we have

‖w−εe−itḢχ(Ḣ)w−ε‖B(Ė) . 〈t〉
−k .

Proposition

Assume (A1)-(A2), (TE1)-(TE3). Let ε > 0. Then we have for all
χ ∈ C∞0 (R \ ṪH): ∫

R
‖w−εe−itḢχ(Ḣ)ϕ‖2

Ėdt . ‖ϕ‖2
Ė .

Theorem

Suppose that λ0 ∈ R is neither a resonance of w−εṘ(λ)w−ε nor of
w−εQ(λ)w−ε. Then λ0 is a regular point of Ḣ.

Proof.
w−εṘ(z) = w−εQ(z)− w−εṘ(z)w−εwεK (z).



6 Uniform boundedness of the evolution 1 : Abstract setting

(B1)


a) For allψ ∈ C∞0 (R), h1/2

0 ψ(x)h−1/2
0 ∈ B(H).

b) If in addition ψ ≡ 1 in a neighborhood of 0, ψ ≥ 0, then
s − limn→∞ ψ

( x
n

)
= 1l in h−1/2

0 H.

(B2) [−ik , h] . w−1h0w−1 in the sense of quadratic forms on D(h0).

For χ ∈ C∞(R) and µ > 0 we put χµ(.) = χ
(
.
µ

)
.

Theorem

Assume (A1), (A2), (TE1)-(TE3), (B1), (B2).
i) Let χ ∈ C∞(R), suppχ ⊂ R \ [−1, 1], χ ≡ 1 on R \ (−2, 2). Then there
exists µ0 > 0,C1 > 0 such that we have for µ ≥ µ0

‖e−itḢχµ(Ḣ)u‖Ė ≤ C1‖χµ(Ḣ)u‖Ė ∀u ∈ Ė , ∀t ∈ R.

ii) Let ϕ ∈ C∞0 (R \ ṪH). Then there exists C2 > 0 such that for all u ∈ Ė
and t ∈ R we have

‖e−itḢϕ(Ḣ)u‖Ė ≤ C2‖ϕ(Ḣ)u‖Ė .



7 Asymptotic completeness 1 : Abstract setting
Definition

We call χ ∈ C∞(R) an admissible energy cut-off function for Ḣ if
I χ ≡ 0 in a neighborhood of ṪH and
I (χ ≡ 0 or χ ≡ 1) on R \ (−R,R) for some R > 0.

We note CH the set of all admissible energy cut-offs for Ḣ.

Definition
The spaces of scattering data are defined by
Ėscatt = {χ(Ḣ)u; u ∈ Ė , χ ∈ CH},
Ė±scatt = {χ(Ḣ±)u; u ∈ Ė±, χ ∈ CH}

Theorem

Assume (A1), (A2), (TE1)-(TE3), (B1)-(B2).
(i) For all ϕ± ∈ Ė±scatt there exist ψ± ∈ Ėscatt such that

e−itḢψ± − i±e−itḢ±ϕ± → 0, t →∞ in Ė .

(ii) For all ψ± ∈ Ėscatt there exist ϕ± ∈ Ė±scatt such that

e−itḢ±ϕ± − i±e−itḢψ± → 0, t →∞ in Ė±.



8 Geometric setting
8.1 Separable hamiltonian

M = R(r−,r+) × Sd−1
ω , P =

∑d−1
ij=1 D∗i αijDj ≥ 0.

(G1) L2(Sd−1
ω ; dω) = ⊕n∈ZY n, Dθ1 |Y n = n, P leaves Y n invariant.

q(r) :=
√

(r+ − r)(r − r−),

Tσ = {f ∈ C∞(M); ∂αr ∂
β
ω f ∈ O(q(r)σ−2α)}.

hs
0 = α1Drα

2
2Drα1 + α2

3P + α2
4, αi = αi (r).

(G2)
{
αi − q(r)(i−α−i + i+α+

i ) ∈ T 1+δ, i = 1, 2, 3, 4,
αi & q(r), i = 1, 2, 3, 4.

ks = ks,r Dθ1 + ks,v .

(G3)


i+ks,r , i+ks,v ∈ T 2,

i−(ks,r − k−s,r ) ∈ T 2,

i−(ks,v − k−s,v ) ∈ T 2.

α±i , k−s,r , k−s,v ∈ R.

hs = hs
0 − k2

s , H = L2(R(r−,r+) × Sd−1
ω ; drdω), Hn = H ∩ Y n.



8.2 Perturbed hamiltonian
(∂2

t − 2iks∂t + hs)u = 0. Perturbation: (∂2
t − 2ik∂t + h)u = 0.

h0|C∞0 (M) = hs
0 +

∑
i,j∈{1,...,d−1}

D∗i g ijDj +
∑

i∈{1,...,d−1}

(g iDi + D∗i gi)

+ Dr grr Dr + gr Dr + Dr gr + f =: hs
0 + hp.

(G4) The functions g ij , g i , grr , gr , f are independent of θ1

(G5)
{

h0 & q(r)(Dr q2(r)Dr + P + 1)q(r),
hs

0 & q(r)(Dr q2(r)Dr + P + 1)q(r).

(G6)


g ij ∈ T 2+δ, i , j ∈ {1, ..., d − 1},
grr ∈ T 4+δ

gr ∈ T 2+δ

g i ∈ T 1+δ, i ∈ {1, ..., d − 1}
f ∈ T 2.

k = kr Dθ1 + kv , kr = ks,r + kp,r , kv = ks,v + kp,v

(G7) kp,v , kr,v ∈ T 2.

h := h0 − k2.



9 Asymptotic completeness 2 : Geometric setting
h+∞ := hs

0, h−∞ := h+∞ − `2,

k+∞ := 0, k−∞ := `.

Define Ḣ±∞, Ė±∞, Ė±∞ in the usual manner.

Theorem

Assume (G1)-(G7).
(i) For all ϕ± ∈ Ėscatt

±∞ there exist ψ± ∈ Ėscatt such that

e−itḢψ± − i±e−itḢ±∞ϕ± → 0, t →∞ in Ė .

(ii) For all ψ± ∈ Ėscatt there exist ϕ± ∈ Ėscatt
±∞ such that

e−itḢ±∞ϕ± − i±e−itḢψ± → 0, t →∞ in Ė±∞.

Proposition
(G1)-(G7) entail (A1), (A2), (TE1)-(TE2), (B1), (B2).

Remark

h+, h̃− are similar to the Laplacian on an asymptotically hyperbolic
manifold. Meromorphic extension : Mazzeo-Melrose ’87.



10 Asymptotic completeness 3 : The De Sitter Kerr case

10.1 Uniform boundedness of the evolution

(5) Hn = {u ∈ L2(R× S2) : (Dϕ − n)u = 0}, n ∈ Z.

We construct the energy spaces Ėn, En as well as the Klein-Gordon
operators Hn, Ḣn as in Sect. 1.

Theorem

There exists a0 > 0 such that for |a| < a0 the following holds: for all
n ∈ Z, there exists Cn > 0 such that

(6) ‖e−itḢn
u‖Ėn ≤ Cn‖u‖Ėn , u ∈ Ėn, t ∈ R.

Note that for n = 0 the Hamiltonian Ḣn = Ḣ0 is selfadjoint, therefore the
only issue is n 6= 0.

Proof :

Results of Dyatlov about the absence of complex eigenvalues and real
resonances for n 6= 0, hypoellipticity argument, general result about the
link between real resonances and singular points.



10.2 Asymptotic profiles

Let `± = Ω±n. Also let il/r ∈ C∞(R), il = 0 in a neighborhood of∞,
ir = 0 in a neighborhood of −∞ and i2

l + i2
r = 1. Let

hn
r/l = −∂2

x − `2
+/−, kr/l = `+/−,

acting on Hn defined in (5).

We associate to these operators the natural homogeneous energy
spaces Ėn

l/r and Hamiltonians Ḣn
l/r . Let {λq : q ∈ N} = σ(P) and

Zq = 1l{λq}(P)H. Then

D(h0) = D(h0,s) = {u ∈ H :
∑
q∈N

‖hs,q
0 1l{λq}(P)u‖2 <∞},

where hs,q
0 is the restriction of h0,s to L2(R)⊗ Zq . Let

Wq := (L2(R)⊗ Zq)⊕ (L2(R)⊗ Zq), Eq,n
l/r := En

r/l ∩Wq ,

Efin,n
l/r :=

{
u ∈ En

l/r : ∃Q > 0, u ∈ ⊕q≤QEq,n
l/r

}
.



Theorem

There exists a0 > 0 such that for all |a| < a0 and n ∈ Z \ {0} the
following holds:

I i) For all u ∈ Efin,n
r/l the limits

Wr/lu = lim
t→∞

eitḢn
i2
r/le
−itḢn

r/l u

exist in Ėn. The operators Wr/l extend to bounded operators
Wr/l ∈ B(Ėn

r/l ; Ėn).
I ii) The inverse wave operators

Ωr/l = s- lim
t→∞

eitḢn
r/l i2

r/le
−itḢn

exist in B(Ėn; Ėn
r/l ).

i), ii) also hold for n = 0 if m > 0.

Remark
We can also compare to separable comparison dynamics for which the
homogeneous energy spaces are the same.



Comments and Perspectives

I In the De Sitter-Kerr case it should be possible to get unifrom results
in n using resolvent estimates that take into account the trapping
(normally hyperbolic trapping). Work in progress.

I If a is “large” you can still do the gluing using more asymptotic
hamiltonians, but the arguments of Dyatlov do not apply
(perturbation arguments from the case a = 0).

I Asymptotic completeness results for hyperbolic equations on black
hole spacetimes are necessary to give mathematically rigorous
descriptions of the Hawking effect that predicts creation of particles
by black holes.

I Because of the analytic extension of the resolvent we need a “very
short range situation”.

I If ` = 0, i.e. k has the same limits in all the ends, the situation is
much better because the conserved form is then continuous with
respect to the natural norm. We can work with Krein spaces. In this
setting we obtain a generalization of the Mourre theorem.



Theorem (Georgescu-Gérard-H 13)
Let K be a Krein space and A the generator of a C0-group of operators
on K such that the Krein structure is of class C1(A). Let H be a
self-adjoint operator on K and Π a positive projection which commutes
with H such that the following conditions are satisfied:

I H is of class Cα(A) for some α > 3/2, in particular H ′ = [H, iA] is
well defined;

I there is ϕ ∈ C∞c (β(H)) real with ϕ(λ) = 1 on a neighborhood of a
compact interval J such that ϕ(H)Π = ϕ(H) and

ϕ(H)(ReH ′)ϕ(H) ≥ aϕ(H)2, a > 0.

Then if s > 1/2 and ε > 0 is small enough, we have

supz∈J±i]0,ν]‖〈εA〉
−sR(z)〈εA〉−s‖ <∞, for some ν > 0.

Remark
To be able to apply the theorem one needs Borel type functional
calculus. This can be obtained for so called definitizable operators. The
Klein-Gordon equation coupled to an electromagnetic field enters into
this setting



Thank you for your attention !
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