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1. Non-relativistic qed

We introduce the symmetric Fock space over the Hilbert space
h := L2(R3 × Z2):

F(h) := C⊕
∞⊕

n=1

F (n)(h) , F (n)(h) := Sn(h⊗n),

with Sn = orthogonal projection onto the subspace of totally
symmetric tensors in h⊗n.
Vacuum vector: Ω = (1,0, · · · ).
Introduce creation a∗(k , λ) and annihilation a(k , λ) operators
satisfying canonical commutation relations,

[a(k , λ),a∗(k ′, λ′)] = δλ,λ′δ(k − k ′), [a#(k , λ),a#(k ′, λ′)] = 0,

a(k , λ)Ω = 0,

for all (k , λ), (k ′, λ′) ∈ R3 × Z2 ( a# stands for a or a∗ ).
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The Hilbert space and Hamiltonian are

H := Hat ⊗F(h), Hat := L2
a((R3 × Z2)N)

Hg :=
N∑

j=1

({pj + gA(xj )} · σj )
2 + V (x1, ..., xN)⊗ 1 + 1⊗ Hf ,

with xj ∈ R3, pj = −i∇xj , σj Pauli-matrix acting on the j-th particle,
and V denotes a potential. The quantized vector potential is

A(x) =
∑
λ=1,2

∫
R3

κ(k)d3k√
2|k |

ελ(k)
(
eik·xa(k , λ) + e−ik·xa∗(k , λ)

)
,

where ε1(k), ε2(k), k/|k | form an orthonormal triplet in R3, and κ
serves as an ultraviolet (UV) cutoff (assume κ(k) = 1|k|≤Λ, Λ > 0).
The operator of the free field energy is

Hf =
∑
λ=1,2

∫
d3k |k |a∗(k , λ)a(k , λ).
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Ground State

For g = 0, the Hamiltonian is of the form

H0 = Hat ⊗ 1 + 1⊗ Hf ,

where Hat :=
∑N

j=1 p2
j + V = −∆ + V .

Assumption: The potential V is symmetric with respect to the
interchange of particle coordinates and satisfies the following
assumptions:
(1) V is infinitesimally small with respect to the Laplacian −∆.
(2) infσ(Hat) is an isolated eigenvalue of Hat with finite multiplicity.

Example: A potential describing an atom (or a molecule with static
nuclei) satisfies these assumptions. E.g.

V (x1, ..., xN) = −
N∑

j=1

Z
|xj |

+
∑

1≤i<j≤N

1
|xj − xi |

with N = Z satisfies (1) and (2).
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• Spectrum of Hat:

-× × × ××
Eat,0 Eat,1 Eat,j... ...

[

• Spectrum of H0:

-× × × ××
Eat,0 Eat,1 Eat,j... ...

[

• Spectrum of Hg for g 6= 0:

-×
Eg

�

Theorem (Bach-Fröhlich-Sigal ’99, Griesemer- Lieb- Loss ’01)

The number
Eg := infσ(Hg)

is an eigenvalue of Hg .
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2. Analyticity in the minimal coupling constant g

Theorem 1 (H- Herbst ’10, H-Lange ’14)

Suppose E0 := infσ(Hat) is a non-degenerate eigenvalue of Hat or E0

satisfies the symmetry Hypothesis (S) stated below.
Then there exists a g0 > 0 such that for all

g ∈ Dg0 := {z ∈ C||z| < g0}

the Hamiltonian Hg has an eigenvalue Eg with eigenvector ψg and
eigenprojection Pg satisfying:

(i) Eg = inf(σ(Hg) for g ∈ R ∩ Dg0 ,

(ii) P∗g = Pg for g ∈ Dg0 ,

(iii) g 7→ Eg , g 7→ ψg , and g → Pg are analytic on Dg0 .

The Theorem holds also for electrons without spin.
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Hypothesis (S). There exists a group, S, of symmetries of the
Hamiltonian Hg (unitary or anti-unitary transformations commuting
with all terms of Hg) such that

(i) S acts irreducibly on the eigenspace of H0 with eigevalue E0.

(ii) S commutes with the following operator

F :=
∑

j

∑
λ=1,2

∫
fxj ,λa∗(k , λ)

dk
|k |1/2 + h.c.

fx,λ(k) := e−ik·xκ(k)
x · ελ(k)

(1 + |k ||x |2)1/2

(F is a generator of a so called generalized Pauli-Fierz
transformation.)

Example:
I Hydrogen atom with spin 1/2-electron: S generated by time

reversal symmetry.
I Atom with spinless electrons: S = group of rotations
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Corollary
Suppose the assumptions of Theorem 1 hold. Then
Rayleigh-Schrödinger perturbation theory is valid.

Remark: The existence of an asymptotic expansion has been shown
by Hainzl-Seiringer ’03, Barbaroux-Chen-Vougalter-Vougalter ’10,
Arai ’13, ... .

Remark. If the ground state is degenerate and the assumptions of
Hypothesis (S) do not hold, it is natural to expect that the degeneracy
is lifted at higher orders in perturbation theory. (Bach-Fröhlich-Sigal
’98, Amour-Faupin ’14, ... )

Remark. There exists a generalization of Theorem 1 to resonances.
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3. Proof

The proof of Theorem 1 is based on operator theoretic
renormalization analysis (RG) as introduced by V. Bach, J. Fröhlich,
and I.M. Sigal ’98.

(1) Generalized Pauli-Fierz Transformation. Use a generalized
Pauli-Fierz transformation to control the infrared singularity.

(2) Extend RG analysis. Extend operator theoretic renormalization
to “matrix-valued” operators acting on Fock-space.

(3) RG preserves analyticity. If the original Hamiltonian is analytic in
g and the RG analysis converges, then also the ground state and
the ground state energy are analytic functions of g.
(H-Griesemer ’09)
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Generalized Pauli-Fierz transformation

To improve the infrared behaviour, define

Ĥg := e−iFgHgeiFg =
N∑

j=1

({pj − gA1(xj )} · σj )
2 + V ⊗ 1 + 1⊗ Hf

+ total number of a’s or a∗’s is at most two ,

where

A1(x) =
∑
λ

∫ (
e−ik·xελ(k)κ(k)−∇x fx,λ(k)

)
a∗λ(k)

d3k
|k |1/2 + h.c.

Lemma
Let ψ̂g be an eigenstate of Ĥg with eigenvalue Eg . Then

ψg := eiFgψ̂g

is an eigenvector of Hg with eigenvalue Eg . If g 7→ ψ̂g is analytic in a
neighborhood of zero, then so is g 7→ ψg .
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RG-Analysis: Feshbach projection

Let
• H be an operator in a Hilbert space H,
• P be a self adjoint projection in H and P̄ = 1− P,
• HP̄ := P̄HP̄ be invertible on the range of P̄.[

1 0
−PHP̄H−1

P̄
1

][
PHP PHP̄
P̄HP P̄HP̄

]
︸ ︷︷ ︸

=H

[
1

−H−1
P̄

P̄HP
0
1

]
=

[
FP(H) 0

0 HP̄

]

where FP(H) := PHP − PHP̄H−1
P̄

P̄HP : RanP → RanP.
Define the auxiliary operator Q := P − H−1

P̄
P̄HP : RanP → H.

Lemma
If FP(H)ϕ = 0 and ϕ 6= 0, then HQϕ = 0 and Qϕ 6= 0.
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Initial decimation step

For simplicity assume Eat,1 − Eat,0 = 1 and that κ is infrared regular.

• P = Pat ⊗ 1(Hf≤3/4)

• Pat = projection onto the ground state of Hat

• H = Hg − z, with z close to E0 and g small.

Spectrum of H0 � RanP:

-× × × ××
E0 := Eat,0 Eat,1 Eat,j... ...

[

Lemma 1
For z ∈ C with |E0 − z| ≤ 1/2 the Feshbach operator

H(0)(g, z) := FP(Hg − z) � RanP (1)

is well defined if |g| is sufficiently small, analytic as a function of g
and z, and commutes with S.
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We say that A ∈ L(RanP) commutes with S if for all S ∈ S we have

SAS∗ =

{
A, if S is unitary
A∗, if S is anti-unitary .

It follows that also
〈H(0)(g, z)〉Ω,

where
〈A〉Ω := (1RanPat ⊗ |Ω〉〈Ω|) A (1RanPat ⊗ |Ω〉〈Ω|),

commutes with S. This implies by Schurs lemma that

〈H(0)(z,g)〉Ω = c(z,g)(1RanPat ⊗ |Ω〉〈Ω|)

for some number c(z,g) ∈ C.
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Expanding the resolvent

If |g| is sufficiently small, we may expand the resolvent in (1) in a
Neumann series and express it in terms of integral kernels w (0)(g, z):

H(0)(g, z) =
∑

m+n≥0

Hm,n(w (0)(g, z)),

where w = (wm,n)m+n≥0 and

wm,n : [0,1]× (B1 × Z2)m+n → L(RanPat), B1 := {k ∈ R3||k | ≤ 1}.

Hm,n(w) := P
∑
λ′s

∫
Bm+n

1

 m∏
j=1

a∗(kj , λj )

wm,n(Hf , km,n)

 n∏
j=1

a(kj , λj )


m+n∏

j=1

d3kj

|kj |1/2

P

km,n := (k1, λ1, ..., km+n, λm+n)
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Banach Space of Integral Kernels

• LetWm,n denote the Banach space of kernels wm,n with norm

‖wm,n‖Wm,n := ‖wm,n‖0 + ‖w ′m,n‖0 where

‖wm,n‖0 := max
j

sup
r∈[0,1],km,n∈Bm+n

1

∥∥∥|kj |−1/2wm,n(r ; km,n)
∥∥∥
L(RanPat)

.

• Define the Banach space of sequences of kernels w = (wm,n)m+n≥0

for some ξ ∈ (0,1) by:

Wξ :=
⊕

m+n≥0

Wm,n ‖w‖ξ =
∑

m+n≥0

ξ−(m+n)‖wm,n‖Wm,n

• Define the Polydiscs inWξ (neighborhoods of “Hf ”):

Dξ(α, β, γ) :=

{∑
m,n

H(wm,n) : w ∈ Wξ, ‖w0,0‖L(RanPat) ≤ α,

sup
r∈[0,1]

‖∂r w0,0(r)− 1‖L(RanPat) ≤ β, ‖(wm,n)m+n≥1‖ξ ≤ γ
}
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Renormalization

Lemma 2
Fix ξ ∈ (0,1). Then for all α, β, γ > 0 there exists a g0 > 0 such that

H(0)(g, z)− 〈H(0)(g, z)〉Ω ∈ Dξ(α, β, γ),

provided |g| ≤ g0 and |z − E0| ≤ 1/2.

Theorem 1 now follows from Lemma 1 and Lemma 2 using operator
theoretic renormalization (Griesemer-H ’09) using the additional
properties:

1. Each renormalization step preserves the symmetry.

2. Vacuum expectations are multiples of the identity.
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4. Applications: Expansions in the fine structure
constant α

First consider the UV cutoff to be of the order of the rest energy of the
electron.

Hα = (p + α1/2AΛ(x))2 − α

|x |
+ Hf .

The ground state energy has the following expansion as α ↓ 0,

infσ(Hα)

= −1
4
α2 + E (1)α3 + E (2)α4 + E (3)α5 logα + o(α5 logα).

Bethe ’47, Hainzl-Seiringer ’03,
Barbaroux-Chen-Vugalter-Vougalter ’09
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Now we consider the UV cutoff to be of the order of the Rydberg
energy (∼ binding energy of the bare hydrogen atom ∼ α2).

H (α) = (p + α3/2AΛ(αx))2 − 1
|x |

+ Hf

∼= α−2
(

(p + α1/2Aα2Λ(x))2 − α

|x |
+ Hf

)

An asymptotic expansion of the ground state energy and ground state
was obtained by Bach-Fröhlich-Pizzo ’07.
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Theorem 2 (H-Herbst ’10)

(i) There exists an α0 > 0, such that for all α ∈ [0, α0), the
Hamiltonian H(α) has a ground state ψ(α1/2) and ground state
energy E(α) with the convergent expansions,

ψ(α1/2) =
∞∑

n=0

c(n)
α α3n/2, E(α) =

∞∑
n=0

E (n)
α α3n.

The coefficients c(n)
α and E (n)

α are uniformly bounded in α ≥ 0.
(ii) For every k ∈ N there exists an α(k)

0 > 0, such that that ψ(·),E(·)
are k-times continuously differentiable on the interval [0, α(k)

0 ).
(iii) There exist formal power series with constant coefficients such
that

ψ(α1/2) ∼
∞∑

n=0

cnα
n/2, E(α) ∼

∞∑
n=0

Enα
n.
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Proof of Theorem 2

(1) We study the Hamiltonian

Hg,β = (p + gAΛ(βx))2 − 1
|x |

+ Hf .

If we set g = α3/2 and β = α, then H(α) = Hα3/2,α.

(2)
• Let ψg(β) be the eigenvector of Hg,β with eigenvalue Eg(β) at the
bottom of the spectrum (Theorem 1).

• Using an RG-analysis we show that for any k ∈ N, there exists a
positive g(k)

0 , such that on Dg(k)
0

g 7→ Eg(·), g 7→ ψg(·)

is a Ck (R)–valued respectively Ck (R;H)–valued analytic function.
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Summary / Outlook

Summary

•We considered ground states in non-relativistic qed. We showed
that the ground state is an analytic function of the minimal coupling
constant g, provided a symmetry hypothesis is satisfied.

Outlook

• Degenerate eigenvalues, for which the degeneracy is not protected
by a symmetry.

Thank you for your attention.
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Proof (Suppose κ(k) = 1|k|≤Λ, Λ > 0) Since g 7→ ψ̂g is analytic, we
have in a neighborhood of zero a convergent power series expansion

ψ̂g =
∑

n

angn.

where the coefficients can be obtained by equating coefficients of

Hgψ̂g = Egψ̂g .

This implies that an contains at most n photons with momenta having
absolute value less than Λ and estimate for some constant CF

depending only on F , that

‖F k an‖ ≤
√

(k + n)!

n!
Ck

F‖an‖

This implies that the double series converges absolutely

∞∑
k=0

∞∑
n=0

(−igF )k

k !
angn (2)
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converges absolutely, since t
hen

e−igF (x)ψ̂g =
∞∑

k=0

∞∑
n=0

(−igF )k

k !
angn,

and the right hand side is analytic function of g. To show that (2)
converges absolutely, we use that an can contain at most n photons
with momenta having absolute value less than Λ, Inserting this we
arrive at
∞∑

k=0

∞∑
n=0

‖ (−igF )k

k !
angn‖ ≤

∞∑
k=0

∞∑
n=0

|g|k

k !
Ck

F

√
(n + k)!

n!
‖an‖|g|n

≤
∞∑

k=0

∞∑
n=0

|g|k

k !
((2n)k/2 + (2k)k/2)Ck

F‖an‖|g|n

≤
∞∑

k=0

∞∑
n=0

|g|k

k !
(2n)k/2Ck

F‖an‖|g|n +
∞∑

k=0

∞∑
n=0

|g|k

k !
(2k)k/2Ck

F‖an‖|g|n

≤
∞∑

k=0

|g|k

k !
Ck

F

∞∑
n=0

(2n)k/2‖an‖|g|n +
∞∑

k=0

|g|k

k !
(2k)k/2Ck

F

∞∑
n=0

‖an‖|g|n

≤
∞∑

k=0

|g|k

k !
2k/2Ck

F (k/2)! sup
n∈N
‖an‖+

∞∑
k=0

|g|k

k !
(2k)k/2Ck

F

( ∞∑
n=0

‖an‖|g|n
)
,

(3)

provided g is sufficiently small, where we have used in the last line∑
n=0

npe−2γn ≤
∫ ∞

0
xpe−γx =

(
− d

dγ

)p ∫ ∞
0

e−γx =

(
− d

dγ

)p

γ−1 = p!γ−p−1

The first term in (3) converges absolutely and the second term in (3)
converges by Stirlings Formula.
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