Unique continuation principle for spectral projections of Schrödinger operators and optimal Wegner estimates for random Schrödinger operators

Abel Klein
University of California, Irvine

SPECTRAL DAYS 2014
CIRM (Luminy)
June 12, 2014
Schrödinger operators

We consider a Schrödinger operator

\[H = -\Delta + V \quad \text{on} \quad L^2(\mathbb{R}^d), \]

where \(\Delta \) is the Laplacian operator and \(V \) is a bounded potential.
Schrödinger operators

We consider a Schrödinger operator
\[H = -\Delta + V \quad \text{on} \quad L^2(\mathbb{R}^d), \]
where \(\Delta \) is the Laplacian operator and \(V \) is a bounded potential.

- We define balls and boxes:
 \[B(x, \delta) := \left\{ y \in \mathbb{R}^d; \|y - x\| < \delta \right\}, \quad \text{with} \quad \|x\| := \|x\|_2 = \left(\sum_{j=1}^{d} |x_j|^2 \right)^{\frac{1}{2}}; \]
 \[\Lambda_L(x) := \left\{ y \in \mathbb{R}^d; \|y - x\|_\infty < \frac{L}{2} \right\}, \quad \text{with} \quad \|x\|_\infty := \max_{j=1,2,\ldots,d} |x_j|. \]
Schrödinger operators

We consider a Schrödinger operator

\[H = -\Delta + V \quad \text{on} \quad L^2(\mathbb{R}^d), \]

where \(\Delta \) is the Laplacian operator and \(V \) is a bounded potential.

- We define balls and boxes:

\[
B(x, \delta) := \left\{ y \in \mathbb{R}^d ; |y - x| < \delta \right\}, \quad \text{with} \quad |x| := |x|_2 = \left(\sum_{j=1}^{d} |x_j|^2 \right)^{\frac{1}{2}};
\]

\[
\Lambda_L(x) := \left\{ y \in \mathbb{R}^d ; |y - x|_\infty < \frac{L}{2} \right\}, \quad \text{with} \quad |x|_\infty := \max_{j=1,2,...,d} |x_j|.
\]

- \(H_\Lambda \) denotes the restriction of \(H \) to the the box \(\Lambda \subset \mathbb{R}^d \):

\[
H_\Lambda = -\Delta_\Lambda + V_\Lambda \quad \text{on} \quad L^2(\Lambda).
\]

- \(\Delta_\Lambda \) is the Laplacian on \(\Lambda \) with either Dirichlet or periodic boundary condition.

- \(V_\Lambda \) is the restriction of \(V \) to \(\Lambda \).
A UCPSP on a box Λ is an estimate of the form

$$\chi_I(H_\Lambda) W_\Lambda \chi_I(H_\Lambda) \geq \kappa \chi_I(H_\Lambda) \quad \text{on} \quad L^2(\Lambda),$$

where χ_I is the characteristic function of an interval $I \subset \mathbb{R}$, $W \geq 0$ is a potential, and $\kappa > 0$ is a constant.
A UCPS on a box \(\Lambda \) is an estimate of the form

\[
\chi_I(H_\Lambda) W_\Lambda \chi_I(H_\Lambda) \geq \kappa \chi_I(H_\Lambda) \quad \text{on} \quad L^2(\Lambda),
\]

where \(\chi_I \) is the characteristic function of an interval \(I \subset \mathbb{R} \), \(W \geq 0 \) is a potential, and \(\kappa > 0 \) is a constant.

- If \(W \geq \kappa > 0 \) (covering condition) the UCPS is trivial.
A UCPSP on a box Λ is an estimate of the form

$$\chi_I(H_{\Lambda}) W_{\Lambda} \chi_I(H_{\Lambda}) \geq \kappa \chi_I(H_{\Lambda}) \text{ on } L^2(\Lambda),$$

where χ_I is the characteristic function of an interval $I \subset \mathbb{R}$, $W \geq 0$ is a potential, and $\kappa > 0$ is a constant.

- If $W \geq \kappa > 0$ (covering condition) the UCPSP is trivial.
- Combes, Hislop and Klopp (2003): The UCPSP holds for bounded \mathbb{Z}^d-periodic potentials V and W, $W \geq 0$ with $W > 0$ on an open set, boxes $\Lambda = \Lambda_L(x_0) \subset \mathbb{R}^d$ with $L \in \mathbb{N}$, H_{Λ} with periodic boundary condition, with a constant $\kappa > 0$ depending on $\sup I$ (and d, V, W), but not on the box Λ. Their proof uses the unique continuation principle and Floquet theory.

Germinet and Klein (2013) proved a modified version of the CHK UCPSP, using Bourgain and Kenig’s quantitative unique continuation principle and (some) Floquet theory, obtaining control of the constant κ in terms of the relevant parameters.
A UCPSP on a box Λ is an estimate of the form

$$\chi_I(H_\Lambda) W_\Lambda \chi_I(H_\Lambda) \geq \kappa \chi_I(H_\Lambda) \quad \text{on } L^2(\Lambda),$$

where χ_I is the characteristic function of an interval $I \subset \mathbb{R}$, $W \geq 0$ is a potential, and $\kappa > 0$ is a constant.

- If $W \geq \kappa > 0$ (covering condition) the UCPSP is trivial.
- Combes, Hislop and Klopp (2003): The UCPSP holds for bounded \mathbb{Z}^d-periodic potentials V and W, $W \geq 0$ with $W > 0$ on an open set, boxes $\Lambda = \Lambda_L(x_0) \subset \mathbb{R}^d$ with $L \in \mathbb{N}$, H_Λ with periodic boundary condition, with a constant $\kappa > 0$ depending on $\sup I$ (and d, V, W), but not on the box Λ. Their proof uses the unique continuation principle and Floquet theory.
- Germinet and Klein (2013) proved a modified version of the CHK UCPSP, using Bourgain and Kenig’s quantitative unique continuation principle and (some) Floquet theory, obtaining control of the constant κ in terms of the relevant parameters.
Theorem (UCPSP)

There exists a constant $M_d > 0$, depending only on d, such that:
Theorem (UCPSP)

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
Theorem (UCPSP)

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in [0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by

$$\gamma^2 = \frac{1}{2} \delta M_d \left(1 + K^2\right), \quad \text{where} \quad K = K(V, E_0) = 2 \|V\|_{\infty} + E_0.$$
Theorem (UCPSP)

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by

$$\gamma^2 = \frac{1}{2} \delta^{Md}\left(1+K^{\frac{2}{3}}\right), \quad \text{where} \quad K = K(V, E_0) = 2\|V\|_{\infty} + E_0.$$

Then, given
Theorem (UCPSP)

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by

$$\gamma^2 = \frac{1}{2} \delta^d (1 + K^2),$$

where $K = K(V, E_0) = 2 \|V\|_\infty + E_0$.

Then, given

- $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$ for all $k \in \mathbb{Z}^d$,

Where $\Lambda_1(k)$ is a box in \mathbb{R}^d.

Abel Klein
Theorem (UCPSP)

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by
 \[
 \gamma^2 = \frac{1}{2} \delta M_d \left(1 + K^\frac{2}{3}\right),
 \]
 where $K = K(V, E_0) = 2 \| V \|_\infty + E_0$.

Then, given

- $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$ for all $k \in \mathbb{Z}^d$,
- a closed interval $I \subset]-\infty, E_0]$ with $|I| \leq 2\gamma$,
Unique continuation principle for spectral projections

Theorem (UCPSP)

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by
 \[
 \gamma^2 = \frac{1}{2} \delta^{M_d} \left(1 + K^\frac{1}{2}\right),
 \]
 where $K = K(V, E_0) = 2\|V\|_\infty + E_0$.

Then, given

- $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$ for all $k \in \mathbb{Z}^d$,
- a closed interval $I \subset]-\infty, E_0]$ with $|I| \leq 2\gamma$,
- a box $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L \geq 114\sqrt{d}$,
Theorem (UCPSP)

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by
 \[
 \gamma^2 = \frac{1}{2} \delta M_d \left(1 + K^2 \right),
 \]
 where $K = K(V, E_0) = 2 \| V \|_{\infty} + E_0$.

Then, given

- $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$ for all $k \in \mathbb{Z}^d$,
- a closed interval $I \subset]-\infty, E_0]$ with $|I| \leq 2\gamma$,
- a box $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L \geq 114\sqrt{d}$,
- a potential
 \[
 W(\Lambda) \geq \sum_{k \in \mathbb{Z}^d, \Lambda_1(k) \subset \Lambda} \chi_{B(y_k, \delta)},
 \]
Theorem (UCPSP)

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by
 \[\gamma^2 = \frac{1}{2} \delta M_d \left(1 + K^\frac{3}{2} \right), \]
 where $K = K(V, E_0) = 2 \| V \|_\infty + E_0$.

Then, given

- $\{ y_k \}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$ for all $k \in \mathbb{Z}^d$,
- a closed interval $I \subset]-\infty, E_0]$ with $|I| \leq 2\gamma$,
- a box $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L \geq 114 \sqrt{d}$,
- a potential
 \[W(\Lambda) \geq \sum_{k \in \mathbb{Z}^d, \Lambda_1(k) \subset \Lambda} \chi_{B(y_k, \delta)}, \]
we have
\[\chi_I(H_\Lambda) W(\Lambda) \chi_I(H_\Lambda) \geq \gamma^2 \chi_I(H_\Lambda) \quad \text{on} \quad L^2(\Lambda). \]
Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{Z}^d$ and $L \in \mathbb{N}_{\text{odd}}$, if ψ is an eigenfunction of H_Λ with eigenvalue $E \in]-\infty, E_0]$, then

$$\| W(\Lambda) \psi \|_2^2 \geq \kappa_{E_0} \| \psi \|_2^2 \quad \text{with} \quad \kappa_{E_0} > 0.$$
Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{Z}^d$ and $L \in \mathbb{N}_{\text{odd}}$, if ψ is an eigenfunction of H_{Λ} with eigenvalue $E \in]-\infty, E_0]$, then

$$\| W(\Lambda) \psi \|_2^2 \geq \kappa_{E_0} \| \psi \|_2^2 \quad \text{with} \quad \kappa_{E_0} > 0.$$

This is just the UCPSP when $I = \{E\}$.
Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{Z}^d$ and $L \in \mathbb{N}_{\text{odd}}$, if ψ is an eigenfunction of H_Λ with eigenvalue $E \in]-\infty, E_0]$, then

$$\left\| W(\Lambda) \psi \right\|_2^2 \geq \kappa_{E_0} \| \psi \|_2^2 \quad \text{with} \quad \kappa_{E_0} > 0.$$

This is just the UCPSP when $I = \{E\}$. Their proof uses the quantitative unique continuation principle (Bourgain and Kenig).
Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{Z}^d$ and $L \in \mathbb{N}_{\text{odd}}$, if ψ is an eigenfunction of H_{Λ} with eigenvalue $E \in]-\infty, E_0]$, then

$$\left\| \mathcal{W}(\Lambda) \psi \right\|_2^2 \geq \kappa_{E_0} \left\| \psi \right\|_2^2 \quad \text{with} \quad \kappa_{E_0} > 0.$$

This is just the UCPSP when $I = \{ E \}$. Their proof uses the quantitative unique continuation principle (Bourgain and Kenig).

Our Theorem is derived from the quantitative unique continuation principle as in Bourgain and Klein using the “dominant boxes” introduced by Rojas-Molina and Veselić.
Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes \(\Lambda = \Lambda_L(x_0) \) with \(x_0 \in \mathbb{Z}^d \) and \(L \in \mathbb{N}_{\text{odd}} \), if \(\psi \) is an eigenfunction of \(H_\Lambda \) with eigenvalue \(E \in]-\infty, E_0] \), then

\[
\| W(\Lambda) \psi \|_2^2 \geq \kappa_{E_0} \| \psi \|_2^2 \quad \text{with} \quad \kappa_{E_0} > 0.
\]

This is just the UCPSP when \(I = \{ E \} \). Their proof uses the quantitative unique continuation principle (Bourgain and Kenig).

Our Theorem is derived from the quantitative unique continuation principle as in Bourgain and Klein using the “dominant boxes” introduced by Rojas-Molina and Veselić.

The UCPSP is a crucial ingredient for proving Wegner estimates for one and multi-particle Anderson Hamiltonians. The UCPSP replaces the covering condition.
Quantitative unique cont. principle (Bourgain-Klein)

Let $\Omega \subset \mathbb{R}^d$ open. Let $\psi \in H^2(\Omega)$ and let $\zeta \in L^2(\Omega)$ be defined by

$$-\Delta \psi + V\psi = \zeta \quad \text{a.e. on } \Omega,$$

where V is a bounded real measurable function on Ω, $\|V\|_\infty \leq K < \infty$.

Let $\Theta \subset \Omega$ be a bounded measurable set where $\|\psi \chi_\Theta\|^2 > 0$.

Set $Q(x, \Theta) := \sup_{y \in \Theta} |y - x|$ for $x \in \Omega$.

Let $x_0 \in \Omega \setminus \Theta$ satisfy $Q = Q(x_0, \Theta) \geq 1$ and $B(x_0, 6Q + 2) \subset \Omega$.

Then, given $\delta > 0 \leq \min\{\text{dist}(x_0, \Theta), \frac{1}{2}\}$, we have

$$\left(\frac{\delta}{Q}\right)^m d \left(1 + \frac{K^2}{3}\right) \left(\frac{Q^4}{3} + \log \|\psi \chi_\Omega\|^2 \|\psi \chi_\Theta\|^2\right) \|\psi \chi_\Theta\|^2 \leq \|\psi \chi_{B(x_0, \delta)}\|^2 + \|\zeta \chi_\Omega\|^2,$$

where $m > 0$ is a constant depending only on d.

Abel Klein
Quantitative unique cont. principle (Bourgain-Klein)

Let $\Omega \subset \mathbb{R}^d$ open. Let $\psi \in H^2(\Omega)$ and let $\zeta \in L^2(\Omega)$ be defined by

$$-\Delta \psi + V \psi = \zeta \quad \text{a.e. on } \Omega,$$

where V is a bounded real measurable function on Ω, $\|V\|_{\infty} \leq K < \infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\|\psi \chi_\Theta\|_2 > 0$. Then, given $0 < \delta \leq \min\{\text{dist}(x_0, \Theta), \frac{1}{2}\}$, we have

$$\left(\delta^4 + \frac{1}{3}\right)\left(\frac{1}{Q} + \log \frac{\|\psi \chi \|_2}{\|\psi \chi_\Theta\|_2^2}\right) \leq \|\psi \chi_{B(x_0, \delta)}\|_2^2 + \|\zeta \chi \|_2^2,$$

where $m > 0$ is a constant depending only on d.
Quantitative unique cont. principle (Bourgain-Klein)

Let $\Omega \subset \mathbb{R}^d$ open. Let $\psi \in H^2(\Omega)$ and let $\zeta \in L^2(\Omega)$ be defined by

$$-\Delta \psi + V\psi = \zeta \quad \text{a.e. on} \quad \Omega,$$

where V is a bounded real measurable function on Ω, $\|V\|_\infty \leq K < \infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\|\psi \chi_\Theta\|_2 > 0$.

Set

$$Q(x, \Theta) := \sup_{y \in \Theta} |y - x| \quad \text{for} \quad x \in \Omega.$$
Let $\Omega \subset \mathbb{R}^d$ open. Let $\psi \in H^2(\Omega)$ and let $\zeta \in L^2(\Omega)$ be defined by

$$-\Delta \psi + V \psi = \zeta \quad \text{a.e. on} \quad \Omega,$$

where V is a bounded real measurable function on Ω, $\|V\|_\infty \leq K < \infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\|\psi \chi_\Theta\|_2 > 0$.

Set $Q(x, \Theta) := \sup_{y \in \Theta} |y - x|$ for $x \in \Omega$.

Let $x_0 \in \Omega \setminus \Theta$ satisfy $Q = Q(x_0, \Theta) \geq 1$ and $B(x_0, 6Q + 2) \subset \Omega$.
Quantitative unique cont. principle (Bourgain-Klein)

Let $\Omega \subset \mathbb{R}^d$ open. Let $\psi \in H^2(\Omega)$ and let $\zeta \in L^2(\Omega)$ be defined by

$$-\Delta \psi + V \psi = \zeta \quad \text{a.e. on } \Omega,$$

where V is a bounded real measurable function on Ω, $\|V\|_{\infty} \leq K < \infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\|\psi \chi_\Theta\|_2 > 0$.

Set

$$Q(x, \Theta) := \sup_{y \in \Theta} |y - x| \quad \text{for } x \in \Omega.$$

Let $x_0 \in \Omega \setminus \overline{\Theta}$ satisfy $Q = Q(x_0, \Theta) \geq 1$ and $B(x_0, 6Q + 2) \subset \Omega$.

Then, given

$$0 < \delta \leq \min \left\{ \text{dist} (x_0, \Theta), \frac{1}{2} \right\},$$
Quantitative unique cont. principle (Bourgain-Klein)

Let $\Omega \subset \mathbb{R}^d$ open. Let $\psi \in H^2(\Omega)$ and let $\zeta \in L^2(\Omega)$ be defined by

$$-\Delta \psi + V\psi = \zeta \quad \text{a.e. on } \Omega,$$

where V is a bounded real measurable function on Ω, $\|V\|_{\infty} \leq K < \infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\|\psi \chi_{\Theta}\|_2 > 0$.

Let $Q(x, \Theta) := \sup_{y \in \Theta} |y - x|$ for $x \in \Omega$.

Let $x_0 \in \Omega \setminus \Theta$ satisfy $Q = Q(x_0, \Theta) \geq 1$ and $B(x_0, 6Q + 2) \subset \Omega$.

Then, given

$$0 < \delta \leq \min \{\text{dist}(x_0, \Theta), \frac{1}{2}\},$$

we have

$$\left(\frac{\delta}{Q}\right)^{m_d (1 + K^\frac{2}{3})} \left(Q^\frac{4}{3} + \log \frac{\|\psi \chi_{\Omega}\|_2}{\|\psi \chi_{\Theta}\|_2} \right) \|\psi \chi_{\Theta}\|_2^2 \leq \|\psi \chi_{B(x_0, \delta)}\|_2^2 + \|\zeta \chi_{\Omega}\|_2^2,$$

where $m_d > 0$ is a constant depending only on d.
Corollary to the quantitative unique continuation principle

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:
Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

1. Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$, where V is a bounded potential with $\|V\|_\infty \leq K$.

Abel Klein
Corollary to the quantitative unique continuation principle

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$, where V is a bounded potential with $\|V\|_\infty \leq K$.
- Fix $\delta \in]0, \frac{1}{2}]$ and sites $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$.

Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$, where V is a bounded potential with $\|V\|_\infty \leq K$. Fix $\delta \in]0, \frac{1}{2}]$ and sites $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$.

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$, where V is a bounded potential with $\|V\|_\infty \leq K$.
- Fix $\delta \in]0, \frac{1}{2}]$ and sites $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$.
Corollary to the quantitative unique continuation principle

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$, where V is a bounded potential with $\|V\|_\infty \leq K$.
- Fix $\delta \in]0, \frac{1}{2}]$ and sites $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$.
- Consider a box $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L \geq 114 \sqrt{d}$.
Corollary to the quantitative unique continuation principle

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$, where V is a bounded potential with $\|V\|_\infty \leq K$.
- Fix $\delta \in]0, \frac{1}{2}]$ and sites $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$.
- Consider a box $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L \geq 114\sqrt{d}$.
- Set $W^{(\Lambda)} = \sum_{k \in \mathbb{Z}^d, \Lambda_1(k) \subset \Lambda} \chi_{B(y_k, \delta)}$.

Abel Klein
Unique continuation principle for spectral projections

Corollary to the quantitative unique continuation principle

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$, where V is a bounded potential with $\|V\|_\infty \leq K$.
- Fix $\delta \in]0, \frac{1}{2}]$ and sites $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$.
- Consider a box $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L \geq 114 \sqrt{d}$.
- Set $W(\Lambda) = \sum_{k \in \mathbb{Z}^d, \Lambda_1(k) \subset \Lambda} \chi_{B(y_k, \delta)}$.

Then for all real-valued $\psi \in \mathcal{D}(H_\Lambda) = \mathcal{D}(\Delta_\Lambda)$ we have (on $L^2(\Lambda)$)

\[\|\psi\|_2^2 \leq M_d \left(\delta + K^2 \right) \left(\sum_{k \in \mathbb{Z}^d, \Lambda_1(k) \subset \Lambda} \|\chi_B(y_k, \delta)\|_2^2 + \|H_\Lambda \psi\|_2^2 \right). \]
Corollary to the quantitative unique continuation principle

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$, where V is a bounded potential with $\|V\|_{\infty} \leq K$.
- Fix $\delta \in]0, \frac{1}{2}]$ and sites $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$.
- Consider a box $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L \geq 114\sqrt{d}$.
- Set $W(\Lambda) = \sum_{k \in \mathbb{Z}^d, \Lambda_1(k) \subset \Lambda} \chi_{B(y_k, \delta)}$.

Then for all real-valued $\psi \in \mathcal{D}(H_\Lambda) = \mathcal{D}(\Delta_\Lambda)$ we have (on $L^2(\Lambda)$)

$$
\delta^{M_d \left(1 + K^2 \frac{2}{3}\right)} \|\psi\|_2^2 \leq \sum_{k \in \mathbb{Z}^d, \Lambda_1(k) \subset \Lambda} \|\psi \chi_{B(y_k, \delta)}\|_2^2 + \|H_\Lambda \psi\|_2^2
$$

$$
= \|W(\Lambda) \psi\|_2^2 + \|H_\Lambda \psi\|_2^2.
$$
Proof of the UCPSP

Let $E_0 > 0$ and $I = [E - \beta, E + \beta] \subset]-\infty, E_0]$ a closed interval. Since $H_\Lambda \geq -\|V\|_\infty$, we assume $E \in [-\|V\|_\infty, E_0]$ without loss of generality, so

$$\|V - E\|_\infty \leq \|V\|_\infty + \max \{E_0, \|V\|_\infty\} \leq K = 2\|V\|_\infty + E_0.$$
Proof of the UCPSP

Let $E_0 > 0$ and $I = [E - \beta, E + \beta] \subset]-\infty, E_0]$ a closed interval. Since $H_{\Lambda} \geq -\|V\|_{\infty}$, we assume $E \in [-\|V\|_{\infty}, E_0]$ without loss of generality, so

$$\|V - E\|_{\infty} \leq \|V\|_{\infty} + \max\{E_0, \|V\|_{\infty}\} \leq K = 2 \|V\|_{\infty} + E_0.$$

Moreover, for any box Λ we have

$$\|(H_{\Lambda} - E)\psi\|_2 \leq \beta \|\psi\|_2 \quad \text{for} \quad \psi = \chi_I(H_{\Lambda})\psi.$$
Proof of the UCPSP

Let $E_0 > 0$ and $I = [E - \beta, E + \beta] \subset]-\infty, E_0]$ a closed interval. Since $H_\Lambda \geq -\|V\|_\infty$, we assume $E \in [-\|V\|_\infty, E_0]$ without loss of generality, so

$$\|V - E\|_\infty \leq \|V\|_\infty + \max\{E_0, \|V\|_\infty\} \leq K = 2\|V\|_\infty + E_0.$$

Moreover, for any box Λ we have

$$\|(H_\Lambda - E)\psi\|_2 \leq \beta \|\psi\|_2 \quad \text{for} \quad \psi = \chi_I(H_\Lambda)\psi.$$

Let Λ be a box as in the Corollary and $\psi = \chi_I(H_\Lambda)\psi$ real-valued.
Proof of the UCPSP

Let $E_0 > 0$ and $I = [E - \beta, E + \beta] \subset]-\infty, E_0]$ a closed interval. Since $H_\Lambda \geq -\|V\|_\infty$, we assume $E \in [-\|V\|_\infty, E_0]$ without loss of generality, so

$$\|V - E\|_\infty \leq \|V\|_\infty + \max\{E_0, \|V\|_\infty\} \leq K = 2\|V\|_\infty + E_0.$$

Moreover, for any box Λ we have

$$\|(H_\Lambda - E)\psi\|_2 \leq \beta \|\psi\|_2 \quad \text{for} \quad \psi = \chi_I(H_\Lambda)\psi.$$

Let Λ be a box as in the Corollary and $\psi = \chi_I(H_\Lambda)\psi$ real-valued. It follows from the Corollary applied to $H - E$ that

$$\delta^{M_d(1+K^2)} \|\psi\|_2^2 \leq \|W(\Lambda)\psi\|_2^2 + \|(H_\Lambda - E)\psi\|_2^2 \leq \|W(\Lambda)\psi\|_2^2 + \beta^2 \|\psi\|_2^2.$$
Proof of the UCPSP

Let $E_0 > 0$ and $I = [E - \beta, E + \beta] \subset]-\infty, E_0]$ a closed interval. Since $H_{\Lambda} \geq -\|V\|_{\infty}$, we assume $E \in [\, -\|V\|_{\infty}, E_0]$ without loss of generality, so

$$\|V - E\|_{\infty} \leq \|V\|_{\infty} + \max\{E_0, \|V\|_{\infty}\} \leq K = 2\|V\|_{\infty} + E_0.$$

Moreover, for any box Λ we have

$$\|(H_{\Lambda} - E)\psi\|_2 \leq \beta \|\psi\|_2 \quad \text{for} \quad \psi = \chi_I(H_{\Lambda})\psi.$$

Let Λ be a box as in the Corollary and $\psi = \chi_I(H_{\Lambda})\psi$ real-valued. It follows from the Corollary applied to $H - E$ that

$$\delta^d(\frac{1}{2}K^\frac{2}{3}) \|\psi\|_2^2 \leq \|W^{(\Lambda)}\psi\|_2^2 + \|(H_{\Lambda} - E)\psi\|_2^2 \leq \|W^{(\Lambda)}\psi\|_2^2 + \beta^2 \|\psi\|_2^2.$$

If $\beta^2 \leq \gamma^2 := \frac{1}{2} \delta^d(\frac{1}{2}K^\frac{2}{3})$, i.e., $|I| \leq 2\gamma$, we get

$$\gamma^2 \|\psi\|_2^2 \leq \|W^{(\Lambda)}\psi\|_2^2, \quad \text{i.e.,} \quad \gamma^2 \chi_I(H_{\Lambda}) \leq \chi_I(H_{\Lambda}) W^{(\Lambda)} \chi_I(H_{\Lambda}).$$
Proof of the Corollary from the QUCP

Take $\Lambda = \Lambda_L(0)$ with $L \in \mathbb{N}_{\text{odd}}$. We extend functions φ on Λ to functions $\hat{\varphi}$ on \mathbb{R}^d and V to a potential \hat{V} on \mathbb{R}^d so

$$(-\Delta + \hat{V})\psi = (-\Delta + \hat{V})\tilde{\psi}.$$
Proof of the Corollary from the QUCP

Take $\Lambda = \Lambda_L(0)$ with $L \in \mathbb{N}_{\text{odd}}$. We extend functions φ on Λ to functions \hat{V} and $\tilde{\varphi}$ on \mathbb{R}^d and V to a potential \hat{V} on \mathbb{R}^d so

$$(-\Delta + V)\psi = (-\Delta + \hat{V})\tilde{\psi}.$$

Take $Y \in \mathbb{N}_{\text{odd}}$, $9 \leq Y < \frac{L}{2}$. Since L is odd, we have $\Lambda = \bigcup_{k \in \Lambda \cap \mathbb{Z}^d} \Lambda_1(k)$. It follows that for all $\varphi \in L^2(\Lambda)$ we have

$$\sum_{k \in \Lambda \cap \mathbb{Z}^d} \left\| \tilde{\varphi}_\Lambda(k) \right\|_2^2 \leq (2Y)^d \left\| \varphi_\Lambda \right\|_2^2.$$
Proof of the Corollary from the QUCP

Take $\Lambda = \Lambda_L(0)$ with $L \in \mathbb{N}_{\text{odd}}$. We extend functions φ on Λ to functions \hat{V} and $\tilde{\varphi}$ on \mathbb{R}^d and V to a potential \hat{V} on \mathbb{R}^d so

$$(-\Delta + V)\psi = (-\Delta + \hat{V})\tilde{\psi}.$$

Take $\gamma \in \mathbb{N}_{\text{odd}}$, $9 \leq \gamma < \frac{L}{2}$. Since L is odd, we have $\Lambda = \bigcup_{k \in \Lambda \cap \mathbb{Z}^d} \Lambda_1(k)$. It follows that for all $\varphi \in L^2(\Lambda)$ we have

$$\sum_{k \in \Lambda \cap \mathbb{Z}^d} \| \tilde{\varphi}_\Lambda(k) \|_2^2 \leq (2\gamma)^d \| \varphi_\Lambda \|_2^2.$$

We now fix $\psi \in \mathcal{D}(\Delta_\Lambda)$. Following Rojas-Molina and Veselić, we call a site $k \in \Lambda$ dominating (for ψ) if

$$\| \psi_{\Lambda_1(k)} \|_2^2 \geq \frac{1}{2(2\gamma)^d} \| \tilde{\psi}_{\Lambda_\gamma(k)} \|_2^2.$$
Proof of the Corollary from the QUCP

Take $\Lambda = \Lambda_L(0)$ with $L \in \mathbb{N}_{\text{odd}}$. We extend functions φ on Λ to functions \hat{V} and $\tilde{\varphi}$ on \mathbb{R}^d and V to a potential \hat{V} on \mathbb{R}^d so

$$(-\Delta + V) \psi = (-\Delta + \hat{V}) \tilde{\psi}.$$

Take $Y \in \mathbb{N}_{\text{odd}}$, $9 \leq Y < \frac{L}{2}$. Since L is odd, we have $\bar{\Lambda} = \bigcup_{k \in \Lambda \cap \mathbb{Z}^d} \Lambda_1(k)$. It follows that for all $\varphi \in L^2(\Lambda)$ we have

$$\sum_{k \in \Lambda \cap \mathbb{Z}^d} \| \tilde{\varphi}_{\Lambda Y}(k) \|_2^2 \leq (2Y)^d \| \varphi_\Lambda \|_2^2.$$

We now fix $\psi \in \mathcal{D}(\Delta_\Lambda)$. Following Rojas-Molina and Veselić, we call a site $k \in \hat{\Lambda}$ dominating (for ψ) if

$$\| \psi_{\Lambda 1}(k) \|_2^2 \geq \frac{1}{2(2Y)^d} \| \tilde{\psi}_{\Lambda Y}(k) \|_2^2,$$

and note that, letting $\hat{D} \subset \Lambda \cap \mathbb{Z}^d$ denote the collection of dominating sites,

$$\sum_{k \in \hat{D}} \| \psi_{\Lambda 1}(k) \|_2^2 \geq \frac{1}{2} \| \psi_\Lambda \|_2^2.$$
Proof of the Corollary-continued

If $k \in \hat{D}$ we apply the QUCP with $\Omega = \Lambda_Y(k)$ and $\Theta = \Lambda_1(k)$, obtaining

$$
\delta^m d \left(1 + K^2 \right) \left\| \psi_{\Lambda_1(k)} \right\|_2^2 \leq \left\| \psi_{B(y_J(k), \delta)} \right\|_2^2 + \left\| \tilde{\zeta}_{\Lambda Y(k)} \right\|_2^2,
$$

where $\tilde{\zeta} = (-\Delta + V) \psi$, Y is appropriately chosen, $Y \leq 40 \sqrt{d} < L^2$, and the map $J: \hat{D} \to \Lambda \cap \mathbb{Z}^d$ is defined appropriately so $J(k) \in \Lambda_Y(k)$ and $\# J^{-1}(\{ j \}) \leq 2$ for all j. Summing over $k \in \hat{D}$ and using $\sum_{k \in \hat{D}} \left\| \psi_{\Lambda_1(k)} \right\|_2^2 \geq \frac{1}{2} \left\| \psi_{\Lambda} \right\|_2^2$, we get

$$
\frac{1}{2} \delta^m d \left(1 + K^2 \right) \left\| \psi_{\Lambda} \right\|_2^2 \leq 2 \sum_{k \in \Lambda \cap \mathbb{Z}^d} \left\| \psi_{B(y_J(k), \delta)} \right\|_2^2 + (2 Y d) \left\| \tilde{\zeta}_{\Lambda Y(k)} \right\|_2^2,
$$

which implies (with a different constant $M_d > 0$)

$$
\delta^m d \left(1 + K^2 \right) \left\| \psi_{\Lambda} \right\|_2^2 \leq 2 \sum_{k \in \Lambda \cap \mathbb{Z}^d} \left\| \psi_{\chi_{B(y_J(k), \delta)}} \right\|_2^2 + \left\| \tilde{\zeta}_{\Lambda Y(k)} \right\|_2^2.
$$
Proof of the Corollary-continued

If \(k \in \hat{D} \) we apply the QUCP with \(\Omega = \Lambda_Y(k) \) and \(\Theta = \Lambda_1(k) \), obtaining

\[
\delta^{m'_d (1 + \kappa^{\frac{2}{3}})} \| \psi_{\Lambda_1(k)} \|_2^2 \leq \| \psi_{B(\gamma_{\mathcal{J}(k)}, \delta)} \|_2^2 + \| \tilde{\zeta}_{\Lambda_Y(k)} \|_2^2,
\]

where \(\zeta = (\Delta + V)\psi \), \(Y \) is appropriately chosen, \(Y \leq 40 \sqrt{d} < \frac{L}{2} \), and the map \(J: \hat{D} \to \Lambda \cap \mathbb{Z}^d \) is defined appropriately so \(J(k) \in \Lambda_Y(k) \) and \(\# J^{-1}(\{j\}) \leq 2 \) for all \(j \).
If \(k \in \hat{D} \) we apply the QUCP with \(\Omega = \Lambda_Y(k) \) and \(\Theta = \Lambda_1(k) \), obtaining

\[
\delta^m_d \big(1 + K^3 \big) \| \psi_{\Lambda_1(k)} \|_2^2 \leq \| \psi_{B(y_{J(k)}, \delta)} \|_2^2 + \| \tilde{\zeta}_{\Lambda_Y(k)} \|_2^2,
\]

where \(\zeta = (-\Delta + V)\psi \), \(Y \) is appropriately chosen, \(Y \leq 40\sqrt{d} < \frac{L}{2} \), and the map \(J: \hat{D} \to \Lambda \cap \mathbb{Z}^d \) is defined appropriately so \(J(k) \in \Lambda_Y(k) \) and \(\#J^{-1}(\{j\}) \leq 2 \) for all \(j \).

Summing over \(k \in \hat{D} \) and using \(\sum_{k \in \hat{D}} \| \psi_{\Lambda_1(k)} \|_2^2 \geq \frac{1}{2} \| \psi_{\Lambda} \|_2^2 \), we get

\[
\frac{1}{2} \delta^m_d \big(1 + K^3 \big) \| \psi_{\Lambda} \|_2^2 \leq 2 \sum_{k \in \Lambda \cap \mathbb{Z}^d} \| \psi_{B(y_k, \delta)} \|_2^2 + (2Y)^d \| \zeta_{\Lambda} \|_2^2
\]

\[
\leq 2 \sum_{k \in \Lambda \cap \mathbb{Z}^d} \| \psi_{B(y_k, \delta)} \|_2^2 + (80\sqrt{d})^d \| \zeta_{\Lambda} \|_2^2,
\]
Proof of the Corollary-continued

If \(k \in \hat{D} \) we apply the QUCP with \(\Omega = \Lambda_Y(k) \) and \(\Theta = \Lambda_1(k) \), obtaining

\[
\delta^m \left(1 + K^2 \right) \| \psi \|_2^2 \leq \| \psi_B(y_J(k), \delta) \|_2^2 + \| \tilde{\zeta} \psi \Lambda_Y(k) \|_2^2,
\]

where \(\zeta = (-\Delta + V)\psi \), \(Y \) is appropriately chosen, \(Y \leq 40\sqrt{d} < \frac{L}{2} \), and the map \(J: \hat{D} \to \Lambda \cap \mathbb{Z}^d \) is defined appropriately so

\[
J(k) \in \Lambda_Y(k) \quad \text{and} \quad \#J^{-1}(\{j\}) \leq 2 \quad \text{for all } j.
\]

Summing over \(k \in \hat{D} \) and using \(\sum_{k \in \hat{D}} \| \psi \Lambda_Y(k) \|_2^2 \geq \frac{1}{2} \| \psi \Lambda \|_2^2 \), we get

\[
\frac{1}{2} \delta^m \left(1 + K^2 \right) \| \psi \Lambda \|_2^2 \leq 2 \sum_{k \in \Lambda \cap \mathbb{Z}^d} \| \psi_B(y_k, \delta) \|_2^2 + (2Y)^d \| \zeta \Lambda \|_2^2
\]

\[
\leq 2 \sum_{k \in \Lambda \cap \mathbb{Z}^d} \| \psi_B(y_k, \delta) \|_2^2 + (80\sqrt{d})^d \| \zeta \Lambda \|_2^2,
\]

which implies (with a different constant \(M_d > 0 \))

\[
\delta^m \left(1 + K^2 \right) \| \psi \Lambda \|_2^2 \leq \sum_{k \in \Lambda \cap \mathbb{Z}^d} \| \psi B(y_k, \delta) \|_2^2 + \| \zeta \Lambda \|_2^2.
\]
A crooked Anderson Hamiltonian is the random Schrödinger operator

\[H_\omega := H_0 + V_\omega \quad \text{on} \quad L^2(\mathbb{R}^d) \]
Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrödinger operator

\[H_\omega := H_0 + V_\omega \text{ on } L^2(\mathbb{R}^d) \]

1. \(H_0 = -\Delta + V^{(0)} \), with \(V^{(0)} \) a bounded potential and \(\inf \sigma(H_0) = 0 \).

Remark: If \(V^{(0)} \) is \(\mathbb{Z}^d \)-periodic with \(q \in \mathbb{N} \), and \(y_j = j \), \(v_j = v_0 \), \(\mu_j = \mu_0 \) for all \(j \in \mathbb{Z}^d \), then \(H_\omega \) is the ergodic (usual) Anderson Hamiltonian.
Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrödinger operator

$$H_\omega := H_0 + V_\omega \text{ on } L^2(\mathbb{R}^d)$$

1. $H_0 = -\Delta + V^{(0)}$, with $V^{(0)}$ a bounded potential and $\inf \sigma(H_0) = 0$.
2. V_ω is a crooked alloy-type random potential:

$$V_\omega(x) := \sum_{j \in \mathbb{Z}^d} \omega_j u_j(x), \text{ with } u_j(x) = v_j(x - y_j),$$

where, for some $\delta_- \in]0, \frac{1}{2}]$ and $u_-, \delta_+, M \in]0, \infty[$.
Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrödinger operator

\[H_\omega := H_0 + V_\omega \] on \(L^2(\mathbb{R}^d) \)

1. \(H_0 = -\Delta + V^{(0)} \), with \(V^{(0)} \) a bounded potential and \(\inf \sigma(H_0) = 0 \).
2. \(V_\omega \) is a crooked alloy-type random potential:

\[V_\omega(x) := \sum_{j \in \mathbb{Z}^d} \omega_j u_j(x), \quad \text{with} \quad u_j(x) = v_j(x - y_j), \]

where, for some \(\delta_- \in]0, \frac{1}{2}] \) and \(u_-, \delta_+, M \in]0, \infty[\):

1. \(\{y_j\}_{j \in \mathbb{Z}^d} \) are sites in \(\mathbb{R}^d \) with \(B(y_j, \delta_-) \subset \Lambda_1(j) \) for all \(j \in \mathbb{Z}^d \);
Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrödinger operator

\[H_\omega := H_0 + V_\omega \quad \text{on} \quad L^2(\mathbb{R}^d) \]

1. \(H_0 = -\Delta + V^{(0)} \), with \(V^{(0)} \) a bounded potential and \(\inf \sigma(H_0) = 0 \).
2. \(V_\omega \) is a crooked alloy-type random potential:

\[V_\omega(x) := \sum_{j \in \mathbb{Z}^d} \omega_j u_j(x), \quad \text{with} \quad u_j(x) = v_j(x - y_j), \]

where, for some \(\delta_- \in]0, \frac{1}{2}] \) and \(u_-, \delta_+, M \in]0, \infty[\):

1. \(\{y_j\}_{j \in \mathbb{Z}^d} \) are sites in \(\mathbb{R}^d \) with \(B(y_j, \delta_-) \subset \Lambda_1(j) \) for all \(j \in \mathbb{Z}^d \);
2. the single site potentials \(\{v_j\}_{j \in \mathbb{Z}^d} \) are measurable functions on \(\mathbb{R}^d \) with

\[u_- \chi_{B(0, \delta_-)} \leq v_j \leq \chi_{\Lambda_\delta_+(0)} \quad \text{for all} \quad j \in \mathbb{Z}^d; \]
Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrödinger operator

\[H_\omega := H_0 + V_\omega \quad \text{on} \quad L^2(\mathbb{R}^d) \]

1. \(H_0 = -\Delta + V(0) \), with \(V(0) \) a bounded potential and \(\inf \sigma(H_0) = 0 \).
2. \(V_\omega \) is a crooked alloy-type random potential:

\[V_\omega(x) := \sum_{j \in \mathbb{Z}^d} \omega_j u_j(x), \quad \text{with} \quad u_j(x) = v_j(x - y_j), \]

where, for some \(\delta_- \in]0, \frac{1}{2} \] and \(u_-, \delta_+, M \in]0, \infty[\):

1. \(\{y_j\}_{j \in \mathbb{Z}^d} \) are sites in \(\mathbb{R}^d \) with \(B(y_j, \delta_-) \subset \Lambda_1(j) \) for all \(j \in \mathbb{Z}^d \);
2. the single site potentials \(\{v_j\}_{j \in \mathbb{Z}^d} \) are measurable functions on \(\mathbb{R}^d \) with

\[u_- \chi_{B(0, \delta_-)} \leq v_j \leq \chi_{\Lambda_{\delta_+}(0)} \quad \text{for all} \quad j \in \mathbb{Z}^d; \]

3. \(\omega = \{\omega_j\}_{j \in \mathbb{Z}^d} \) is a family of independent random variables whose probability distributions \(\{\mu_j\}_{j \in \mathbb{Z}^d} \) are non-degenerate with

\[\text{supp} \mu_j \subset [0, M] \quad \text{for all} \quad j \in \mathbb{Z}^d. \]
A **crooked Anderson Hamiltonian** is the random Schrödinger operator

\[H_\omega := H_0 + V_\omega \text{ on } L^2(\mathbb{R}^d) \]

1. \(H_0 = -\Delta + V^{(0)} \), with \(V^{(0)} \) a bounded potential and \(\inf \sigma(H_0) = 0 \).
2. \(V_\omega \) is a crooked alloy-type random potential:

\[V_\omega(x) := \sum_{j \in \mathbb{Z}^d} \omega_j u_j(x), \quad \text{with} \quad u_j(x) = v_j(x - y_j), \]

where, for some \(\delta_- \in]0, \frac{1}{2}] \) and \(u_-, \delta_+, M \in]0, \infty[:\)

1. \(\{y_j\}_{j \in \mathbb{Z}^d} \) are sites in \(\mathbb{R}^d \) with \(B(y_j, \delta_-) \subset \Lambda_1(j) \) for all \(j \in \mathbb{Z}^d \);
2. the single site potentials \(\{v_j\}_{j \in \mathbb{Z}^d} \) are measurable functions on \(\mathbb{R}^d \) with

\[u_- \chi_{B(0, \delta_-)} \leq v_j \leq \chi_{\Lambda_{\delta_+}(0)} \]

for all \(j \in \mathbb{Z}^d \);
3. \(\omega = \{\omega_j\}_{j \in \mathbb{Z}^d} \) is a family of independent random variables whose probability distributions \(\{\mu_j\}_{j \in \mathbb{Z}^d} \) are non-degenerate with

\[\text{supp } \mu_j \subset [0, M] \quad \text{for all} \quad j \in \mathbb{Z}^d. \]

Remark: If \(V^{(0)} \) is \(q\mathbb{Z}^d \)-periodic with \(q \in \mathbb{N} \), and \(y_j = j, v_j = v_0, \mu_j = \mu_0 \) for all \(j \in \mathbb{Z}^d \), then \(H_\omega \) is the ergodic (usual) Anderson Hamiltonian.
Finite volume crooked Anderson Hamiltonians

We define finite volume crooked Anderson Hamiltonians on a box
$\Lambda = \Lambda_L(x_0), \ x_0 \in \mathbb{R}^d$ and $L > 0$, with either Dirichlet or periodic boundary condition, by

$$H_{\omega,\Lambda} = H_{0,\Lambda} + V_{\omega}^{(\Lambda)} \quad \text{on} \quad L^2(\Lambda),$$
Finite volume crooked Anderson Hamiltonians

We define finite volume crooked Anderson Hamiltonians on a box \(\Lambda = \Lambda_L(x_0), \ x_0 \in \mathbb{R}^d \) and \(L > 0 \), with either Dirichlet or periodic boundary condition, by

\[
H_{\omega,\Lambda} = H_{0,\Lambda} + V_{\omega}^{(\Lambda)} \quad \text{on} \quad L^2(\Lambda),
\]

where

- \(H_{0,\Lambda} = (H_0)_\Lambda \) is the restriction of \(H_0 \) to \(\Lambda \) with the specified boundary condition,
Finite volume crooked Anderson Hamiltonians

We define finite volume crooked Anderson Hamiltonians on a box \(\Lambda = \Lambda_L(x_0) \), \(x_0 \in \mathbb{R}^d \) and \(L > 0 \), with either Dirichlet or periodic boundary condition, by

\[
H_{\omega, \Lambda} = H_{0, \Lambda} + V_{\omega}^{(\Lambda)} \quad \text{on} \quad L^2(\Lambda),
\]

where

- \(H_{0, \Lambda} = (H_0)_\Lambda \) is the restriction of \(H_0 \) to \(\Lambda \) with the specified boundary condition,

- \(V_{\omega}^{(\Lambda)}(x) := \sum_{j \in \Lambda \cap \mathbb{Z}^d} \omega_j u_j(x) \quad \text{for} \quad x \in \Lambda. \)
finite volume crooked Anderson Hamiltonians

We define finite volume crooked Anderson Hamiltonians on a box \(\Lambda = \Lambda_L(x_0), \ x_0 \in \mathbb{R}^d \) and \(L > 0 \), with either Dirichlet or periodic boundary condition, by

\[
H_{\omega,\Lambda} = H_{0,\Lambda} + V_{\omega}^{(\Lambda)} \quad \text{on} \quad L^2(\Lambda),
\]

where

- \(H_{0,\Lambda} = (H_0)_\Lambda \) is the restriction of \(H_0 \) to \(\Lambda \) with the specified boundary condition,

- \(V_{\omega}^{(\Lambda)}(x) := \sum_{j \in \Lambda \cap \mathbb{Z}^d} \omega_j u_j(x) \) for \(x \in \Lambda \).

We also set

\[
U(x) := \sum_{j \in \mathbb{Z}^d} u_j(x) \quad \text{and} \quad U^{(\Lambda)}(x) := \sum_{j \in \Lambda \cap \mathbb{Z}^d} u_j(x),
\]

\[
W(x) := \sum_{j \in \mathbb{Z}^d} \chi_{B(y_j,\delta)}(x) \quad \text{and} \quad W^{(\Lambda)}(x) := \sum_{j \in \mathbb{Z}^d, \Lambda_1(j) \subset \Lambda} \chi_{B(y_j,\delta)}.
\]
Remark and notation

Note that

\[0 \leq W_\Lambda \leq \frac{1}{u_-} U_\Lambda. \]
Remark and notation

Note that

\[0 \leq W_{\Lambda} \leq \frac{1}{u_-} U_{\Lambda}. \]

We will use the following notation:

- \(P_{\omega,\Lambda}(B) := \chi_B(H_{\omega,\Lambda}) \) for a Borel set \(B \subset \mathbb{R}^d \).
Remark and notation

Note that

\[0 \leq W_\Lambda \leq \frac{1}{u_-} U_\Lambda. \]

We will use the following notation:

- \(P_{\omega,\Lambda}(B) := \chi_B(H_{\omega,\Lambda}) \) for a Borel set \(B \subset \mathbb{R}^d \).
- The concentration function of the probability measure \(\mu \) is defined by

\[
S_\mu(t) := \sup_{a \in \mathbb{R}} \mu([a, a + t]) \quad \text{for} \quad t \geq 0.
\]
Remark and notation

Note that

\[0 \leq W_\Lambda \leq \frac{1}{u_-} U_\Lambda. \]

We will use the following notation:

- \(P_{\omega,\Lambda}(B) := \chi_B(H_{\omega,\Lambda}) \) for a Borel set \(B \subset \mathbb{R}^d \).
- The concentration function of the probability measure \(\mu \) is defined by

\[
S_\mu(t) := \sup_{a \in \mathbb{R}} \mu([a, a + t]) \quad \text{for} \quad t \geq 0.
\]

- \(S_\Lambda(t) := \max_{j \in \Lambda \cap \mathbb{Z}^d} S_{\mu_j}(t). \)
Optimal Wegner estimates

An optimal Wegner estimate for Anderson Hamiltonians is an estimate of the form

$$\mathbb{E}\{ \text{tr} P_{\omega,\Lambda}(I) \} \leq C S_\Lambda(|I|)|\Lambda|.$$
An optimal Wegner estimate for Anderson Hamiltonians is an estimate of the form

$$E \{ \text{tr} P_{\omega,\Lambda}(I) \} \leq C \Lambda(|I|)|\Lambda|.$$

- Combes, Hislop (1994) proved optimal Wegner estimates for ergodic Anderson Hamiltonians with a covering condition.
An optimal Wegner estimate for Anderson Hamiltonians is an estimate of the form
\[\mathbb{E} \{ \text{tr} P_{\omega,\Lambda}(I) \} \leq C S_{\Lambda}(|I|) |\Lambda|. \]

- Combes, Hislop (1994) proved optimal Wegner estimates for ergodic Anderson Hamiltonians with a covering condition.
- Combes, Hislop, Klopp (2007) proved optimal Wegner estimates for ergodic Anderson Hamiltonians with periodic boundary condition and boxes \(\Lambda = \Lambda_L(x_0) \) with \(L \) a multiple of the period.
 Their proof uses the UCSP for the (nonrandom) periodic operator \(H_0 \).
Optimal Wegner estimates

An optimal Wegner estimate for Anderson Hamiltonians is an estimate of the form

$$E \left\{ \text{tr} P_{\omega, \Lambda}(I) \right\} \leq C S_{\Lambda}(|I|)|\Lambda|.$$

- Combes, Hislop (1994) proved optimal Wegner estimates for ergodic Anderson Hamiltonians with a covering condition.
- Combes, Hislop, Klopp (2007) proved optimal Wegner estimates for ergodic Anderson Hamiltonians with periodic boundary condition and boxes $\Lambda = \Lambda_L(x_0)$ with L a multiple of the period. Their proof uses the UCSP for the (nonrandom) periodic operator H_0.
- Rojas-Molina and Veselić (2013) proved Wegner estimates for Delone-Anderson models, optimal up to an additional factor:

$$E \left\{ \text{tr} P_{\omega, \Lambda}(I) \right\} \leq C |\log |I|| d S_{\Lambda}(|I|)|\Lambda|.$$

They used their single energy UCSP for the (nonrandom) operator H_0.

Wegner estimates for crooked Anderson Hamiltonians imply corresponding Wegner estimates for Delone-Anderson models.
Optimal Wegner estimates

An optimal Wegner estimate for Anderson Hamiltonians is an estimate of the form

\[E \left\{ \text{tr} \, P_{\omega, \Lambda}(I) \right\} \leq C \, S_{\Lambda}(|I|) |\Lambda|. \]

- Combes, Hislop (1994) proved optimal Wegner estimates for ergodic Anderson Hamiltonians with a covering condition.
- Combes, Hislop, Klopp (2007) proved optimal Wegner estimates for ergodic Anderson Hamiltonians with periodic boundary condition and boxes \(\Lambda = \Lambda_L(x_0) \) with \(L \) a multiple of the period. Their proof uses the UCSP for the (nonrandom) periodic operator \(H_0 \).
- Rojas-Molina and Veselić (2013) proved Wegner estimates for Delone-Anderson models, optimal up to an additional factor:
 \[E \left\{ \text{tr} \, P_{\omega, \Lambda}(I) \right\} \leq C \, |\log |I||^d \, S_{\Lambda}(|I|) |\Lambda|. \]
 They used their single energy UCSP for the (nonrandom) operator \(H_0 \).
Optimal Wegner estimate for crooked Anderson Hamiltonians.

Using the UCPSP for the full random operator H_ω, we prove

Theorem

Let H_ω be a crooked Anderson Hamiltonian.
Optimal Wegner estimate for crooked Anderson Hamiltons.

Using the UCPSP for the full random operator H_ω, we prove

Theorem

Let H_ω be a crooked Anderson Hamiltonian. Given $E_0 > 0$, define $\gamma > 0$ by

$$\gamma^2 = \frac{1}{2} \delta_-^{M_d (1 + K^{2/3})}, \quad \text{where} \quad K = E_0 + 2 \left(\| V^{(0)} \|_\infty + M \| U \|_\infty \right).$$

and $M_d > 0$ is the constant in the UCPSP Theorem.
Optimal Wegner estimate for crooked Anderson Hamiltonians.

Using the UCPSP for the full random operator H_ω, we prove

Theorem

Let H_ω be a crooked Anderson Hamiltonian. Given $E_0 > 0$, define $\gamma > 0$ by

$$\gamma^2 = \frac{1}{2} \delta_-^{M_d} \left(1 + K^{2/3}\right), \quad \text{where} \quad K = E_0 + 2 \left(\|V^{(0)}\|_\infty + M \|U\|_\infty\right).$$

and $M_d > 0$ is the constant in the UCPSP Theorem.

Then for any closed interval $I \subset]-\infty, E_0]$ with $|I| \leq 2\gamma$ and any box $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L \geq 114\sqrt{d} + \delta_+$,
Optimal Wegner estimate for crooked Anderson Hamiltons.

Using the UCPSP for the full random operator H_ω, we prove

Theorem

Let H_ω be a crooked Anderson Hamiltonian. Given $E_0 > 0$, define $\gamma > 0$ by

$$\gamma^2 = \frac{1}{2} \delta_- M_d \left(1 + K^\frac{2}{3}\right), \quad \text{where} \quad K = E_0 + 2 \left(\| V^{(0)} \|_\infty + M \| U \|_\infty\right).$$

and $M_d > 0$ is the constant in the UCPSP Theorem.

Then for any closed interval $I \subset [-\infty, E_0]$ with $|I| \leq 2\gamma$ and any box $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L \geq 114\sqrt{d} + \delta_+$, we have

$$\mathbb{E} \left\{ \text{tr} \ P_{\omega,\Lambda}(I) \right\} \leq C_{d,\delta_+} \| V^{(0)} \|_\infty \left(u^{-2} \gamma^{-4} (1 + E_0)\right)^{2 + \frac{\log d}{\log 2}} S_\Lambda(|I|) |\Lambda|.$$

Abel Klein

Unique continuation principle for spectral projections
UCPSP \implies Optimal Wegner estimate

The theorem (optimal Wegner estimates) follows from the UCPSP theorem and the following lemma.
The theorem (optimal Wegner estimates) follows from the UCPSP theorem and the following lemma.

Lemma

Let H_ω be a crooked Anderson Hamiltonian.
The theorem (optimal Wegner estimates) follows from the UCPSP theorem and the following lemma.

Lemma

Let H_ω be a crooked Anderson Hamiltonian. Let $I \subset]-\infty, E_0]$ be a closed interval and $\Lambda = \Lambda_L(x_0)$ a box centered at $x_0 \in \mathbb{R}^d$ with $L \geq 2 + \delta_+$.

Abel Klein

Unique continuation principle for spectral projections
UCPSP \implies Optimal Wegner estimate

The theorem (optimal Wegner estimates) follows from the UCPSP theorem and the following lemma.

Lemma

Let H_ω be a crooked Anderson Hamiltonian.

Let $I \subset]-\infty, E_0]$ be a closed interval and $\Lambda = \Lambda_L(x_0)$ a box centered at $x_0 \in \mathbb{R}^d$ with $L \geq 2 + \delta_+$.

Suppose there exists a constant $\kappa > 0$ such that

$$P_\omega,\Lambda(I) U(\Lambda) P_\omega,\Lambda(I) \geq \kappa P_\omega,\Lambda(I) \quad \text{with probability one.}$$
The theorem (optimal Wegner estimates) follows from the UCPSP theorem and the following lemma.

Lemma

Let H_ω be a crooked Anderson Hamiltonian. Let $I \subset [-\infty, E_0]$ be a closed interval and $\Lambda = \Lambda_L(x_0)$ a box centered at $x_0 \in \mathbb{R}^d$ with $L \geq 2 + \delta_+$. Suppose there exists a constant $\kappa > 0$ such that

$$P_{\omega, \Lambda}(I) U^{(\Lambda)} P_{\omega, \Lambda}(I) \geq \kappa P_{\omega, \Lambda}(I) \quad \text{with probability one.}$$

Then

$$\mathbb{E} \left\{ \text{tr} \; P_{\omega, \Lambda}(I) \right\} \leq C_{d, \delta_+, \|V^{(0)}\|_\infty} \left(\frac{\kappa^{-2}}{(1 + E_0)} \right)^{2 \left(1 + \frac{\log d}{\log 2} \right)} S_{\Lambda}(|I|) |\Lambda|. $$
Proof of Lemma

We fix Λ and $I \subset]-\infty, E_0]$, let $P = P_{\omega,\Lambda}(I)$, $U = U^{(\Lambda)}$. Then (Dirichlet bc)
Proof of Lemma

We fix Λ and $I \subset]-\infty, E_0]$, let $P = P_{\omega, \Lambda}(I)$, $U = U^{(\Lambda)}$. Then (Dirichlet bc)

$$\text{tr } P \leq \kappa^{-1} \text{tr } PUP = \kappa^{-1} \text{tr } \sqrt{U} P \sqrt{U} \leq \kappa^{-2} \text{tr } \sqrt{U} PUP \sqrt{U} = \kappa^{-2} \text{tr } PUPU$$

$$= \kappa^{-2} \text{tr } PUPUP \leq \kappa^{-2} (1 + E_0) \text{tr } PU(H_{\omega, \Lambda} + 1)^{-1} UP$$

$$\leq \kappa^{-2} (1 + E_0) \text{tr } PU(H_{0, \Lambda} + 1)^{-1} UP$$

$$= \kappa^{-2} (1 + E_0) \text{tr } UPU(H_{0, \Lambda} + 1)^{-1}$$

$$= \kappa^{-2} (1 + E_0) \sum_{i,j \in \Lambda \cap \mathbb{Z}^d} \text{tr } \sqrt{u_j} P \sqrt{u_i} T_{ij},$$
Proof of Lemma

We fix Λ and $I \subset]-\infty, E_0]$, let $P = P_{\omega, \Lambda}(I)$, $U = U^{(\Lambda)}$. Then (Dirichlet bc)

\[
\text{tr} P \leq \kappa^{-1} \text{tr} PUP = \kappa^{-1} \text{tr} \sqrt{U} P \sqrt{U} \leq \kappa^{-2} \text{tr} \sqrt{U} PUP \sqrt{U} = \kappa^{-2} \text{tr} PUPU
\]
\[
= \kappa^{-2} \text{tr} PUPUP \leq \kappa^{-2} (1 + E_0) \text{tr} PU(H_{\omega, \Lambda} + 1)^{-1} UP
\]
\[
\leq \kappa^{-2} (1 + E_0) \text{tr} PU(H_{0, \Lambda} + 1)^{-1} UP
\]
\[
= \kappa^{-2} (1 + E_0) \text{tr} UPU(H_{0, \Lambda} + 1)^{-1}
\]
\[
= \kappa^{-2} (1 + E_0) \sum_{i,j \in \Lambda \cap \mathbb{Z}^d} \text{tr} \sqrt{u_j} P \sqrt{u_i} T_{ij},
\]

where $T_{ij} = \sqrt{u_i}(H_{0, \Lambda} + 1)^{-1} \sqrt{u_j}$ for $i,j \in \Lambda \cap \mathbb{Z}^d$.

Abel Klein Unique continuation principle for spectral projections
Proof of Lemma

We fix Λ and $I \subset [-\infty, E_0]$, let $P = P_{\omega, \Lambda}(I)$, $U = U^{(\Lambda)}$. Then (Dirichlet bc)

$$\text{tr } P \leq \kappa^{-1} \text{tr } PUP = \kappa^{-1} \text{tr } \sqrt{UP}\sqrt{U} \leq \kappa^{-2} \text{tr } \sqrt{UPUP}\sqrt{U} = \kappa^{-2} \text{tr } PUPU$$

$$= \kappa^{-2} \text{tr } PUPUP \leq \kappa^{-2}(1 + E_0) \text{tr } PU(H_{\omega, \Lambda} + 1)^{-1}UP$$

$$\leq \kappa^{-2}(1 + E_0) \text{tr } PU(H_{0, \Lambda} + 1)^{-1}UP$$

$$= \kappa^{-2}(1 + E_0) \text{tr } UPU(H_{0, \Lambda} + 1)^{-1}$$

$$= \kappa^{-2}(1 + E_0) \sum_{i,j \in \Lambda \cap \mathbb{Z}^d} \text{tr } \sqrt{u_j P}\sqrt{u_i} T_{ij},$$

where $T_{ij} = \sqrt{u_i}(H_{0, \Lambda} + 1)^{-1}\sqrt{u_j}$ for $i,j \in \Lambda \cap \mathbb{Z}^d$.

We may now adapt an argument in in Combes, Hislop, Klopp obtaining

$$\mathbb{E} \text{tr } P \leq C_{d, \delta_+, \nu_\infty^{(0)}} \left(\kappa^{-2}(1 + E_0) \right)^{2 + \frac{\log d}{\log 2}} S_{\Lambda}(|I|)|\Lambda|.$$
Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrödinger operator

$$H^{(n)}_\omega := H^{(n)}_{0,\omega} + U \quad \text{on} \quad \mathbf{L}^2(\mathbb{R}^{nd}),$$

where

$$H^{(n)}_{0,\omega} := -\Delta^{(n)} + V^{(n)}_\omega.$$

Abel Klein

Unique continuation principle for spectral projections
Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrödinger operator

$$H^{(n)}_{\omega} := H^{(n)}_{0,\omega} + U \quad \text{on} \quad L^2(\mathbb{R}^{nd}), \quad \text{where} \quad H^{(n)}_{0,\omega} := -\Delta^{(n)} + V^{(n)}_{\omega}.$$

1 $\Delta^{(n)}$ is the nd-dimensional Laplacian operator.
Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrödinger operator

$$H_{\omega}^{(n)} := H_{0,\omega}^{(n)} + U$$
on $L^2(\mathbb{R}^{nd})$, where $H_{0,\omega}^{(n)} := -\Delta^{(n)} + V^{(n)}_{\omega}$.

1 $\Delta^{(n)}$ is the nd-dimensional Laplacian operator.
2 $V^{(n)}_{\omega}$ is the random potential given by $(x = (x_1, \ldots, x_n) \in \mathbb{R}^{nd})$

$$V^{(n)}_{\omega}(x) = \sum_{i=1,\ldots,n} V^{(1)}_{\omega}(x_i), \quad \text{with} \quad V^{(1)}_{\omega}(x) = \sum_{k \in \mathbb{Z}^d} \omega_k u(x - k),$$
Multi-particle Anderson Hamiltonians

The \(n \)-particle Anderson Hamiltonian is the random Schrödinger operator

\[
H_{\omega}^{(n)} := H_{0,\omega}^{(n)} + U \quad \text{on} \quad L^2(\mathbb{R}^{nd}), \quad \text{where} \quad H_{0,\omega}^{(n)} := -\Delta^{(n)} + V_{\omega}^{(n)}.
\]

1. \(\Delta^{(n)} \) is the \(nd \)-dimensional Laplacian operator.
2. \(V_{\omega}^{(n)} \) is the random potential given by \((x = (x_1, \ldots, x_n) \in \mathbb{R}^{nd}) \)

\[
V_{\omega}^{(n)}(x) = \sum_{i=1,\ldots,n} V_{\omega}^{(1)}(x_i), \quad \text{with} \quad V_{\omega}^{(1)}(x) = \sum_{k \in \mathbb{Z}^d} \omega_k u(x - k),
\]

1. \(\omega = \{\omega_k\}_{k \in \mathbb{Z}^d} \) is a family of independent identically distributed random variables whose common probability distribution \(\mu \) has a bounded density \(\rho \) and satisfies \(\{0, M_+\} \subset \text{supp} \mu \subset [0, M_+] \) for some \(M_+ > 0 \).
Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrödinger operator

$$H_{\omega}^{(n)} := H_{0,\omega}^{(n)} + U \quad \text{on} \quad L^2(\mathbb{R}^{nd}), \quad \text{where} \quad H_{0,\omega}^{(n)} := -\Delta^{(n)} + V_\omega^{(n)}.$$

1. $\Delta^{(n)}$ is the nd-dimensional Laplacian operator.
2. $V_\omega^{(n)}$ is the random potential given by $(x = (x_1, \ldots, x_n) \in \mathbb{R}^{nd})$

$$V_\omega^{(n)}(x) = \sum_{i=1,\ldots,n} V_\omega^{(1)}(x_i), \quad \text{with} \quad V_\omega^{(1)}(x) = \sum_{k \in \mathbb{Z}^d} \omega_k u(x - k),$$

1. $\omega = \{\omega_k\}_{k \in \mathbb{Z}^d}$ is a family of independent identically distributed random variables whose common probability distribution μ has a bounded density ρ and satisfies $\{0, M_+\} \subset \text{supp} \mu \subset [0, M_+]$ for some $M_+ > 0$;
2. the single site potential u is a measurable function on \mathbb{R}^d with

$$u - \chi_{\Lambda_-(0)} \leq u \leq \chi_{\Lambda_+(0)}, \quad \text{where} \quad u_-, \delta \in (0, \infty), \quad \Lambda_\delta(0) = (-\frac{\delta}{2}, \frac{\delta}{2})^d.$$
Multi-particle Anderson Hamiltonians

The \(n \)-particle Anderson Hamiltonian is the random Schrödinger operator

\[
H^{(n)}_\omega := H^{(n)}_{0,\omega} + U \quad \text{on} \quad L^2(\mathbb{R}^{nd}), \quad \text{where} \quad H^{(n)}_{0,\omega} := -\Delta^{(n)} + V^{(n)}_{\omega}.
\]

1. \(\Delta^{(n)} \) is the \(nd \)-dimensional Laplacian operator.
2. \(V^{(n)}_{\omega} \) is the random potential given by (\(\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^{nd} \))

\[
V^{(n)}_{\omega}(\mathbf{x}) = \sum_{i=1}^{n} V^{(1)}_{\omega}(x_i), \quad \text{with} \quad V^{(1)}_{\omega}(\mathbf{x}) = \sum_{k \in \mathbb{Z}^d} \omega_k u(\mathbf{x} - k),
\]

1. \(\omega = \{\omega_k\}_{k \in \mathbb{Z}^d} \) is a family of independent identically distributed random variables whose common probability distribution \(\mu \) has a bounded density \(\rho \) and satisfies \(\{0, M_+\} \subset \text{supp} \mu \subset [0, M_+] \) for some \(M_+ > 0 \);
2. the single site potential \(u \) is a measurable function on \(\mathbb{R}^d \) with

\[
u_–\chi_{\Lambda \delta_–(0)} \leq u \leq \chi_{\Lambda \delta_+(0)}, \quad \text{where} \quad \nu_–, \delta_\pm \in (0, \infty), \Lambda \delta(0) = (-\frac{\delta}{2}, \frac{\delta}{2})^d.
\]
3. \(U \) is a short range interaction potential between the \(n \) particles:

\[
U(\mathbf{x}) = \sum_{1 \leq i < j \leq n} \tilde{U}(x_i - x_j),
\]
Multi-particle Anderson Hamiltonians

The \(n \)-particle Anderson Hamiltonian is the random Schrödinger operator

\[
H^{(n)}_\omega := H^{(n)}_{0,\omega} + U \quad \text{on} \quad L^2(\mathbb{R}^{nd}), \quad \text{where} \quad H^{(n)}_{0,\omega} := -\Delta^{(n)} + V^{(n)}_\omega.
\]

1. \(\Delta^{(n)} \) is the \(nd \)-dimensional Laplacian operator.
2. \(V^{(n)}_\omega \) is the random potential given by \((x = (x_1, \ldots, x_n) \in \mathbb{R}^{nd})\)

\[
V^{(n)}_\omega(x) = \sum_{i=1}^{n} V^{(1)}_{\omega}(x_i), \quad \text{with} \quad V^{(1)}_{\omega}(x) = \sum_{k \in \mathbb{Z}^d} \omega_k u(x - k),
\]

1. \(\omega = \{\omega_k\}_{k \in \mathbb{Z}^d} \) is a family of independent identically distributed random variables whose common probability distribution \(\mu \) has a bounded density \(\rho \) and satisfies \(\{0, M_+\} \subset \text{supp}\mu \subset [0, M_+] \) for some \(M_+ > 0 \);
2. the single site potential \(u \) is a measurable function on \(\mathbb{R}^d \) with

\[
u - \chi_{\Lambda_\delta_{-}}(0) \leq u \leq \chi_{\Lambda_\delta_{+}}(0), \quad \text{where} \quad u_{\pm}, \delta_{\pm} \in (0, \infty), \quad \Lambda_\delta(0) = (-\frac{\delta}{2}, \frac{\delta}{2})^d.
\]
3. \(U \) is a short range interaction potential between the \(n \) particles:

\[
U(x) = \sum_{1 \leq i < j \leq n} \tilde{U}(x_i - x_j),
\]

\[
0 \leq \tilde{U}(y) \leq \tilde{U}_\infty < \infty, \quad \tilde{U}(y) = \tilde{U}(-y), \quad \tilde{U}(y) = 0 \quad \text{for} \quad \|y\|_\infty > r_0 \in (0, \infty).
\]
Notation

1. Given \(x = (x_1, \ldots, x_d) \in \mathbb{R}^d \), we set \(\| x \| = \| x \|_\infty := \max \{ |x_1|, \ldots, |x_d| \} \).
Notation

1. Given \(x = (x_1, \ldots, x_d) \in \mathbb{R}^d \), we set \(\|x\| = \|x\|_{\infty} := \max\{|x_1|, \ldots, |x_d|\} \).
2. If \(a = (a_1, \ldots, a_n) \in \mathbb{R}^{nd} \), we set \(\|a\| := \max\{\|a_1\|, \ldots, \|a_n\|\} \).
Notation

1. Given $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$, we set $\|x\| = \|x\|_{\infty} := \max\{|x_1|, \ldots, |x_d|\}$.
2. If $a = (a_1, \ldots, a_n) \in \mathbb{R}^{nd}$, we set $\|a\| := \max\{|a_1|, \ldots, |a_n|\}$.
3. The one-particle box centered at $x \in \mathbb{R}^d$ with side of length $L > 0$ is $\Lambda_L(x) = \{y \in \mathbb{R}^d; \|y - x\| < \frac{L}{2}\}$. We set $\hat{\Lambda} = \Lambda \cap \mathbb{Z}^d$.
Optimal Wegner estimates – multi-particles

Notation

1. Given \(x = (x_1, \ldots, x_d) \in \mathbb{R}^d \), we set \(\|x\| = \|x\|_\infty := \max \{|x_1|, \ldots, |x_d|\} \).

2. If \(a = (a_1, \ldots, a_n) \in \mathbb{R}^{nd} \), we set \(\|a\| := \max \{|a_1|, \ldots, |a_n|\} \).

3. The one-particle box centered at \(x \in \mathbb{R}^d \) with side of length \(L > 0 \) is \(\Lambda_L(x) = \{y \in \mathbb{R}^d; \|y - x\| < \frac{L}{2}\} \). We set \(\hat{\Lambda} = \Lambda \cap \mathbb{Z}^d \).

4. The \(n \)-particle box centered at \(x \in \mathbb{R}^{nd} \) with side length \(L > 0 \) is

\[
\Lambda_L^{(n)}(x) = \left\{ y \in \mathbb{R}^{nd}; \|y - x\| < \frac{L}{2}\right\} = \prod_{i=1}^{n} \Lambda_L(x_i);
\]

note that \(\Lambda_L^{(1)}(x) = \Lambda_L(x) \). By a box \(\Lambda_L \) in \(\mathbb{R}^{nd} \) we mean an \(n \)-particle box \(\Lambda_L^{(n)}(x) \) for some \(x \in \mathbb{R}^{nd} \).
Given $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$, we set $\|x\| = \|x\|_\infty := \max\{|x_1|, \ldots, |x_d|\}$.

If $a = (a_1, \ldots, a_n) \in \mathbb{R}^{nd}$, we set $\|a\| := \max\{\|a_1\|, \ldots, \|a_n\|\}$.

The one-particle box centered at $x \in \mathbb{R}^d$ with side of length $L > 0$ is $\Lambda_L(x) = \{y \in \mathbb{R}^d; \|y - x\| < \frac{L}{2}\}$. We set $\hat{\Lambda} = \Lambda \cap \mathbb{Z}^d$.

The n-particle box centered at $x \in \mathbb{R}^{nd}$ with side length $L > 0$ is

$$\Lambda_L^{(n)}(x) = \left\{ y \in \mathbb{R}^{nd}; \|y - x\| < \frac{L}{2}\right\} = \prod_{i=1}^{n} \Lambda_L(x_i);$$

note that $\Lambda_L^{(1)}(x) = \Lambda_L(x)$. By a box Λ_L in \mathbb{R}^{nd} we mean an n-particle box $\Lambda_L^{(n)}(x)$ for some $x \in \mathbb{R}^{nd}$.

Given a one-particle box Λ, we will use E_{Λ} and P_{Λ} to denote the expectation and probability with respect to the probability distribution of the random variables $\{\omega_k\}_{k \in \hat{\Lambda}}$.
Finite volume multi-particle Anderson Hamiltonians

Given an n-particle box $\Lambda = \Lambda^{(n)}_L(a)$, we define the corresponding finite volume Anderson Hamiltonian $H^{(n)}_{\omega,\Lambda}$ on $L^2(\Lambda)$ by

$$H^{(n)}_{\omega,\Lambda} := H^{(n)}_{0,\omega,\Lambda} + U_{\Lambda},$$

with $H^{(n)}_{0,\omega,\Lambda} := -\Delta^{(n)}_{\Lambda} + V^{(n)}_{\omega,\Lambda}$.
Finite volume multi-particle Anderson Hamiltonians

Given an n-particle box $\Lambda = \Lambda^{(n)}_{L}(a)$, we define the corresponding finite volume Anderson Hamiltonian $H^{(n)}_{\omega,\Lambda}$ on $L^2(\Lambda)$ by

$$H^{(n)}_{\omega,\Lambda} := H^{(n)}_{0,\omega,\Lambda} + U_{\Lambda},$$

with

$$H^{(n)}_{0,\omega,\Lambda} := -\Delta^{(n)}_{\Lambda} + V^{(n)}_{\omega,\Lambda},$$

where $\Delta^{(n)}_{\Lambda}$ is the Laplacian on Λ with Dirichlet boundary condition, U_{Λ} is the restriction of U to Λ, $V^{(n)}_{\omega,\Lambda}(x) = \sum_{k \in \hat{\Lambda}_{\omega}} k u(x - k)$ for $x \in \Lambda$.

Abel Klein
Unique continuation principle for spectral projections
Finite volume multi-particle Anderson Hamiltonians

Given an n-particle box $\Lambda = \Lambda^{(n)}_{L}(a)$, we define the corresponding finite volume Anderson Hamiltonian $H^{(n)}_{\omega, \Lambda}$ on $L^{2}(\Lambda)$ by

$$H^{(n)}_{\omega, \Lambda} := H^{(n)}_{0, \omega, \Lambda} + U_{\Lambda}, \quad \text{with} \quad H^{(n)}_{0, \omega, \Lambda} := -\Delta^{(n)}_{\Lambda} + V^{(n)}_{\omega, \Lambda},$$

where $\Delta^{(n)}_{\Lambda}$ is the Laplacian on Λ with Dirichlet boundary condition, U_{Λ} is the restriction of U to Λ, and

$$V^{(n)}_{\omega, \Lambda}(x) = \sum_{i=1}^{n} V^{(1)}_{\omega, \Lambda}(a_{i})(x_{i}) \quad \text{for} \quad x \in \Lambda,$$

where $V^{(1)}_{\omega, \Lambda}$ is defined for a one-particle box $\Lambda \subseteq \mathbb{R}^{d}$ by

$$V^{(1)}_{\omega, \Lambda}(x) = \sum_{k \in \hat{\Lambda}} \omega_{k} \ u(x - k) \quad \text{for} \quad x \in \Lambda.$$
Given an \(n \)-particle box \(\Lambda = \Lambda^{(n)}_L(\mathbf{a}) \), we define the corresponding finite volume Anderson Hamiltonian \(H^{(n)}_{\omega,\Lambda} \) on \(L^2(\Lambda) \) by

\[
H^{(n)}_{\omega,\Lambda} := H^{(n)}_{0,\omega,\Lambda} + U_\Lambda,
\]

with \(H^{(n)}_{0,\omega,\Lambda} := -\Delta^{(n)}_\Lambda + V^{(n)}_{\omega,\Lambda} \),

where \(\Delta^{(n)}_\Lambda \) is the Laplacian on \(\Lambda \) with Dirichlet boundary condition, \(U_\Lambda \) is the restriction of \(U \) to \(\Lambda \), and

\[
V^{(n)}_{\omega,\Lambda}(x) = \sum_{i=1}^n V^{(1)}_{\omega,\Lambda_L(a_i)}(x_i) \quad \text{for} \quad x \in \Lambda,
\]

where \(V^{(1)}_{\omega,\Lambda} \) is defined for a one-particle box \(\Lambda \subseteq \mathbb{R}^d \) by

\[
V^{(1)}_{\omega,\Lambda}(x) = \sum_{k \in \hat{\Lambda}} \omega_k \, u(x - k) \quad \text{for} \quad x \in \Lambda.
\]

We set

\[
R^{(n)}_{\omega,\Lambda}(z) = (H^{(n)}_{\omega,\Lambda} - z)^{-1} \quad \text{for} \quad z \notin \sigma(H^{(n)}_{\omega,\Lambda}).
\]
Wegner estimate for multi-particle Anderson Hamiltonians

Theorem

Let $n \in \mathbb{N}$ and $E_+ > 0$. There exist constants $\gamma_{n,E_+} > 0$ and C_{n,E_+}, such that, for all n-particle boxes $\Lambda = \Lambda^{(n)}_L(a)$ with $a = (a_1, \ldots, a_n) \in \mathbb{R}^{nd}$ and $L \geq 114 \sqrt{nd}$ and all intervals $I \subseteq [0, E_+]$ with $|I| \leq 2 \gamma_{n,E_+}$, we have

$$
\mathbb{E}_{\Lambda_L(a_i)} \left\{ \text{tr} \chi_I \left(H^{(n)}_{\omega, \Lambda} \right) \right\} \leq C_{n,E_+} \| \rho \|_\infty |I| L^{nd} \quad \text{for} \quad i = 1, 2, \ldots, n.
$$

In particular, for any $E \leq E_+$, $0 < \varepsilon \leq \gamma_{n,E_+}$, and $i = 1, 2, \ldots, n$, we have

$$
\mathbb{P}_{\Lambda_L(a_i)} \left\{ d(\sigma(H^{(n)}_{\omega, \Lambda}), E) \leq \varepsilon \right\} \leq 2 C_{n,E_+} \| \rho \|_\infty \varepsilon L^{nd}.
$$
Wegner estimate for multi-particle Anderson Hamiltonians

Theorem

Let $n \in \mathbb{N}$ and $E_+ > 0$. There exist constants $\gamma_{n,E_+} > 0$ and C_{n,E_+}, such that, for all n-particle boxes $\Lambda = \Lambda_L^{(n)}(a) \text{ with } a = (a_1, \ldots, a_n) \in \mathbb{R}^{nd}$ and $L \geq 114 \sqrt{nd}$ and all intervals $I \subseteq [0, E_+)$ with $|I| \leq 2 \gamma_{n,E_+}$, we have

$$\mathbb{E}_{\Lambda_L(a_i)} \left\{ \text{tr} \chi_I \left(H^{(n)}_{\omega, \Lambda} \right) \right\} \leq C_{n,E_+} \| \rho \|_{\infty} |I| L^{nd} \quad \text{for } i = 1, 2, \ldots, n.$$

In particular, for any $E \leq E_+$, $0 < \varepsilon \leq \gamma_{n,E_+}$, and $i = 1, 2, \ldots, n$, we have

$$\mathbb{P}_{\Lambda_L(a_i)} \left\{ d(\sigma(H^{(n)}_{\omega, \Lambda}), E) \leq \varepsilon \right\} \leq 2C_{n,E_+} \| \rho \|_{\infty} \varepsilon L^{nd}.$$

Hislop and Klopp: similar Wegner estimate taking expectation over all random variables.
Proof of multi-particle Wegner estimate

Let $\Lambda = \Lambda_L(n)(a)$, $\Lambda_i = \Lambda_L(a_i)$.

$$V_{\omega, \Lambda}(x) = \sum_{i=1}^{n} V_{\omega, \Lambda_i}(x_i) = \sum_{i=1}^{n} \sum_{k \in \hat{\Lambda}_i} \omega_k u(x_i - k) = \sum_{k \in \mathbb{Z}^d} \omega_k \theta_k^{(\Lambda)}(x),$$

$$\theta_k^{(\Lambda)}(x) = \sum_{\{i; k \in \hat{\Lambda}_i\}} u(x_i - k) \geq u_{-} \sum_{\{i; k \in \hat{\Lambda}_i\}} \chi_{\Lambda_1}^{(1)}(x_i).$$

Fix $q \in \{1, 2, \ldots, n\}$, we have

$$H_{\omega, \Lambda}^{(n)} = -\Delta^{(n)} + U_{\Lambda} + \sum_{k \in \mathbb{Z}^d \setminus \hat{\Lambda}_q} \omega_k \theta_k^{(\Lambda)} + \sum_{k \in \hat{\Lambda}_q} \omega_k \theta_k^{(\Lambda)}.$$

Then for $x \in \Lambda$ we have (with $\eta = \min\{\frac{\delta_-}{2}, \frac{1}{2}\}$)

$$W^{(\Lambda)}(x) := \sum_{k \in \Lambda \cap \mathbb{Z}^{nd}} \chi_{B^{(n)}(k, \eta)}(x) \leq u_{-1}^{-1} \sum_{k \in \hat{\Lambda}_q} \theta_k^{(\Lambda)}(x).$$
Fix $E_+ > 0$. It follows from the UCPSP Theorem that for any interval $I \subseteq [0, E_+]$ with $|I| \leq 2\gamma_{n,E_+}$ we have

$$\chi_I(H_{\omega,\Lambda}^{(n)}) \leq \gamma_{n,E_+}^{-2} \chi_I(H_{\omega,\Lambda}^{(n)}) W(\Lambda) \chi_I(H_{\omega,\Lambda}^{(n)})$$

$$\leq u_{-1}^{-1} \gamma_{n,E_+}^{-2} \chi_I(H_{\omega,\Lambda}^{(n)}) \left(\sum_{k \in \tilde{\Lambda}_q} \theta_k^{(\Lambda)} \right) \chi_I(H_{\omega,\Lambda}^{(n)}),$$

where $\gamma_{n,E_+}^2 = \frac{1}{2} \eta^{M_{nd}} (1 + K^{\frac{2}{3}})$ with $K = n(n - 1) \|\tilde{U}\|_\infty + 2M_+ \delta_+ + E_+$.

The Wegner estimate can now be proved following as in one-particle case, averaging only the random variables $\{\omega_i\}_{i \in \tilde{\Lambda}_q}$.
Let $H_{\omega, \lambda} = H_0 + \lambda V_\omega$ be a crooked Anderson Hamiltonian, where $\lambda > 0$ is the disorder parameter.
Wegner estimates at high disorder

Let $H_{\omega,\lambda} = H_0 + \lambda V_\omega$ be a crooked Anderson Hamiltonian, where $\lambda > 0$ is the disorder parameter. We can make explicit the dependence on λ in the Wegner estimate:

$$\mathbb{E} \left\{ \text{tr} \ P_{\omega,\lambda,\Lambda}(I) \right\} \leq C E_0 e^{c E_0 \left(1 + \lambda^{2\frac{3}{2}} \right)} S_{\Lambda}(\lambda^{-1} |I| |\Lambda|).$$
Wegner estimates at high disorder

Let $H_{\omega,\lambda} = H_0 + \lambda V_\omega$ be a crooked Anderson Hamiltonian, where $\lambda > 0$ is the disorder parameter.

We can make explicit the dependence on λ in the Wegner estimate:

$$\mathbb{E} \{ \text{tr} P_{\omega,\lambda}(I) \} \leq C_{E_0} e^{c_{E_0} \left(1 + \lambda^{\frac{2}{3}}\right)} S_\lambda (\lambda^{-1} |I|) |\Lambda|.$$

If we use the UCPSP for H_0, as in Combes, Hislop and Klopp, we get

$$\mathbb{E} \{ \text{tr} P_{\omega,\lambda}(I) \} \leq C_{E_0} \left(1 + \lambda^{2 + \frac{\log d}{\log 2}}\right) S_\lambda (\lambda^{-1} |I|) |\Lambda|.$$
Let $H_{\omega,\lambda} = H_0 + \lambda V_\omega$ be a crooked Anderson Hamiltonian, where $\lambda > 0$ is the disorder parameter.

We can make explicit the dependence on λ in the Wegner estimate:

$$\mathbb{E} \left\{ \text{tr} P_{\omega,\lambda,\Lambda}(I) \right\} \leq C_{E_0} e^{c_{E_0} \left(1 + \lambda^2 \right)} S_\Lambda (\lambda^{-1} |I|) |\Lambda|.$$

If we use the UCPSP for H_0, as in Combes, Hislop and Klopp, we get

$$\mathbb{E} \left\{ \text{tr} P_{\omega,\lambda,\Lambda}(I) \right\} \leq C_{E_0} \left(1 + \lambda^{2 + \frac{\log d}{\log 2}} \right) S_\Lambda (\lambda^{-1} |I|) |\Lambda|.$$

These Wegner estimates get worse as the disorder increases.
Let $H_{\omega,\lambda} = H_0 + \lambda V_\omega$ be a crooked Anderson Hamiltonian, where $\lambda > 0$ is the disorder parameter.

We can make explicit the dependence on λ in the Wegner estimate:

$$
\mathbb{E} \left\{ \text{tr} P_{\omega,\lambda,\Lambda}(I) \right\} \leq C E_0 e^{c E_0 \left(1 + \lambda^{2/3}\right)} S_\Lambda(\lambda^{-1} |I|) |\Lambda|.
$$

If we use the UCPSP for H_0, as in Combes, Hislop and Klopp, we get

$$
\mathbb{E} \left\{ \text{tr} P_{\omega,\lambda,\Lambda}(I) \right\} \leq C E_0 \left(1 + \lambda^{2 + \frac{\log d}{\log 2}}\right) S_\Lambda(\lambda^{-1} |I|) |\Lambda|.
$$

These Wegner estimates get worse as the disorder increases.

But if we have the covering condition $U^{(\Lambda)} \geq \alpha \chi_\Lambda$ for some $\alpha > 0$, we get, following Combes-Hislop or the Lemma,

$$
\mathbb{E} \left\{ \text{tr} P_{\omega,\lambda,\Lambda}(I) \right\} \leq C_{d,\delta,+},\alpha,\|V^{(0)}\|_\infty, E_0 S_\Lambda(\lambda^{-1} |I|) |\Lambda|.
$$
Wegner estimates at high disorder

Let $H_{\omega, \lambda} = H_0 + \lambda V_\omega$ be a crooked Anderson Hamiltonian, where $\lambda > 0$ is the disorder parameter.

We can make explicit the dependence on λ in the Wegner estimate:

$$\mathbb{E} \left\{ \text{tr} \, P_{\omega, \lambda, \Lambda}(I) \right\} \leq C E_0 e^{c E_0 \left(1 + \lambda^{\frac{2}{3}} \right)} S_\Lambda (\lambda^{-1} |I|) |\Lambda|.$$

If we use the UCPSP for H_0, as in Combes, Hislop and Klopp, we get

$$\mathbb{E} \left\{ \text{tr} \, P_{\omega, \lambda, \Lambda}(I) \right\} \leq C E_0 \left(1 + \lambda^{2 + \frac{\log d}{\log 2}} \right) S_\Lambda (\lambda^{-1} |I|) |\Lambda|.$$

These Wegner estimates get worse as the disorder increases.

But if we have the covering condition $U^{(\Lambda)} \geq \alpha \chi_\Lambda$ for some $\alpha > 0$, we get, following Combes-Hislop or the Lemma,

$$\mathbb{E} \left\{ \text{tr} \, P_{\omega, \lambda, \Lambda}(I) \right\} \leq C_{d, \delta_+, \alpha, \|V^{(0)}\|_\infty, E_0} S_\Lambda (\lambda^{-1} |I|) |\Lambda|,$$

a Wegner estimate that gets better as the disorder increases.
Optimal Wegner estimate at the bottom of the spectrum at high disorder

Theorem

Let $H_{\omega,\lambda}$ be a crooked Anderson Hamiltonian with disorder $\lambda > 0$.

Abel Klein
Unique continuation principle for spectral projections
Optimal Wegner estimate at the bottom of the spectrum at high disorder

Theorem

Let $H_{\omega, \lambda}$ be a crooked Anderson Hamiltonian with disorder $\lambda > 0$. Then

$$E(\infty) := \lim_{t \to \infty} E(t) = \sup_{t \geq 0} E(t) > 0,$$

where $E(t) := \inf_{\sigma(H_0 + tu - W)}$.

Unique continuation principle for spectral projections
Optimal Wegner estimate at the bottom of the spectrum at high disorder

Theorem

Let $H_{\omega,\lambda}$ be a crooked Anderson Hamiltonian with disorder $\lambda > 0$. Then

$$E(\infty) := \lim_{t \to \infty} E(t) = \sup_{t \geq 0} E(t) > 0,$$

where $E(t) := \inf_{\sigma(H_0 + tu-W)} \sigma$. Moreover, for each $E_1 \in]0, E(\infty)[$, there exists $\kappa = \kappa(E_1) > 0$, independent of λ, such that the following holds for all $\lambda > 0$:
Optimal Wegner estimate at the bottom of the spectrum at high disorder

Theorem

Let $H_{\omega,\lambda}$ be a crooked Anderson Hamiltonian with disorder $\lambda > 0$. Then

$$E(\infty) := \lim_{t \to \infty} E(t) = \sup_{t \geq 0} E(t) > 0,$$

where $E(t) := \inf \sigma(H_0 + tu - W)$.

Moreover, for each $E_1 \in]0, E(\infty)[$, there exists $\kappa = \kappa(E_1) > 0$, independent of λ, such that the following holds for all $\lambda > 0$: Given a box $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L \geq 2 + \delta_+$, we have

$$P^{(D)}_{\omega,\lambda,\Lambda}([-\infty, E_1]) U^{(\Lambda)} P^{(D)}_{\omega,\lambda,\Lambda}([-\infty, E_1]) \geq \kappa P^{(D)}_{\omega,\lambda,\Lambda}([-\infty, E_1]),$$
Optimal Wegner estimate at the bottom of the spectrum at high disorder

Theorem

Let $H_{\omega, \lambda}$ be a crooked Anderson Hamiltonian with disorder $\lambda > 0$. Then

$$E(\infty) := \lim_{t \to \infty} E(t) = \sup_{t \geq 0} E(t) > 0, \quad \text{where} \quad E(t) := \inf_{\sigma} \sigma(H_0 + tu - W).$$

Moreover, for each $E_1 \in]0, E(\infty)[$, there exists $\kappa = \kappa(E_1) > 0$, independent of λ, such that the following holds for all $\lambda > 0$: Given a box $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L \geq 2 + \delta_+$, we have

$$P^{(D)}_{\omega, \lambda, \Lambda}([- \infty, E_1]) U^{(\Lambda)} P^{(D)}_{\omega, \lambda, \Lambda}([- \infty, E_1]) \geq \kappa P^{(D)}_{\omega, \lambda, \Lambda}([- \infty, E_1]),$$

and, for any interval $I \subset] - \infty, E_1]$, \[E \left\{ \text{tr} P^{(D)}_{\omega, \lambda, \Lambda}(I) \right\} \leq C_{d, \delta_+, V_0^{(0)}} \left(\kappa^{-2}(1 + E_1) \right)^{2 + \frac{\log d}{\log 2}} S_{\Lambda}(\lambda^{-1} |I|) |\Lambda| \]
Lemma

Let H_0, u_-, W be as in a crooked Anderson Hamiltonian, set $H(t) = H_0 + tu_-W$ for $t \geq 0$, and let $E(t) = \inf \sigma(H(t))$, $E(\infty) = \lim_{t \to \infty} E(t) = \sup_{t \geq 0} E(t)$.
A lower bound on $E(\infty)$

Lemma

Let H_0, u_-, W be as in a crooked Anderson Hamiltonian, set $H(t) = H_0 + tu_- W$ for $t \geq 0$, and let $E(t) = \inf \sigma(H(t))$, $E(\infty) = \lim_{t \to \infty} E(t) = \sup_{t \geq 0} E(t)$. Then

$$E(t) \geq tu_- \delta_- M_d \left(1 + \left(2 V_0(0) + 2tu_- \right)^{\frac{2}{3}} \right)$$

for all $t \geq 0$, so we conclude that $E(\infty) \geq \sup_{t \in [0, \infty]} E(t)$. This lemma is proven from the Corollary to the QUCP.
A lower bound on $E(\infty)$

Lemma

Let H_0, u_-, W be as in a crooked Anderson Hamiltonian, set $H(t) = H_0 + tu_- W$ for $t \geq 0$, and let $E(t) = \inf \sigma(H(t))$, $E(\infty) = \lim_{t \to \infty} E(t) = \sup_{t \geq 0} E(t)$. Then

$$E(t) \geq tu_- \delta_- \quad \text{for all} \quad t \geq 0,$$

so we conclude that

$$E(\infty) \geq \sup_{t \in [0, \infty]} t\delta_- M_d \left(1 + \left(2V_\infty^{(0)} + 2tu_-\right)^{\frac{2}{3}} \right) > 0.$$
A lower bound on $E(\infty)$

Lemma

Let H_0, u_-, W be as in a crooked Anderson Hamiltonian, set $H(t) = H_0 + tu_-W$ for $t \geq 0$, and let $E(t) = \inf \sigma(H(t))$, $E(\infty) = \lim_{t \to \infty} E(t) = \sup_{t \geq 0} E(t)$. Then

$$E(t) \geq tu_-\delta_- \quad \text{for all} \quad t \geq 0,$$

so we conclude that

$$E(\infty) \geq \sup_{t \in [0,\infty[} t\delta_- > 0.$$

This lemma is proven from the Corollary to the QUCP.
An abstract UCSP

The Theorem now follows using an extension of an abstract UCPS due to Boutet de Monvel, Lenz, and Stollmann (2011).
An abstract UCSP

The Theorem now follows using an extension of an abstract UCPS due to Boutet de Monvel, Lenz, and Stollmann (2011).

Lemma

Let H_0 be a self-adjoint operator on a Hilbert space \mathcal{H}, bounded from below, and let $Y \geq 0$ be a bounded operator on \mathcal{H}.
An abstract UCSP

The Theorem now follows using an extension of an abstract UCPS due to Boutet de Monvel, Lenz, and Stollmann (2011).

Lemma

Let H_0 be a self-adjoint operator on a Hilbert space \mathcal{H}, bounded from below, and let $Y \geq 0$ be a bounded operator on \mathcal{H}. Let $H(t) = H_0 + tY$ for $t \geq 0$, and set $E(t) = \inf \sigma(H(t))$.

Abel Klein Unique continuation principle for spectral projections
An abstract UCSP

The Theorem now follows using an extension of an abstract UCPS due to Boutet de Monvel, Lenz, and Stollmann (2011).

Lemma

Let H_0 be a self-adjoint operator on a Hilbert space \mathcal{H}, bounded from below, and let $Y \geq 0$ be a bounded operator on \mathcal{H}. Let $H(t) = H_0 + tY$ for $t \geq 0$, and set $E(t) = \inf \sigma(H(t))$. Let $E(\infty) = \lim_{t \to \infty} E(t) = \sup_{t \geq 0} E(t)$.
An abstract UCSP

The Theorem now follows using an extension of an abstract UCPSP due to Boutet de Monvel, Lenz, and Stollmann (2011).

Lemma

Let H_0 be a self-adjoint operator on a Hilbert space \mathcal{H}, bounded from below, and let $Y \geq 0$ be a bounded operator on \mathcal{H}. Let $H(t) = H_0 + tY$ for $t \geq 0$, and set $E(t) = \inf \sigma(H(t))$.

Let $E(\infty) = \lim_{t \to \infty} E(t) = \sup_{t \geq 0} E(t)$.

Suppose $E(\infty) > E(0)$. Given $E_1 \in]E(0), E(\infty)[$, let

$$\kappa = \kappa(H_0, Y, E_1) = \sup_{s > 0; \ E(s) > E_1} \frac{E(s) - E_1}{s} > 0.$$
An abstract UCSP

The Theorem now follows using an extension of an abstract UCPSP due to Boutet de Monvel, Lenz, and Stollmann (2011).

Lemma

Let H_0 be a self-adjoint operator on a Hilbert space \mathcal{H}, bounded from below, and let $Y \geq 0$ be a bounded operator on \mathcal{H}. Let $H(t) = H_0 + tY$ for $t \geq 0$, and set $E(t) = \inf \sigma(H(t))$.

Let $E(\infty) = \lim_{t \to \infty} E(t) = \sup_{t \geq 0} E(t)$.

Suppose $E(\infty) > E(0)$. Given $E_1 \in]E(0), E(\infty)[$, let

$$\kappa = \kappa(H_0, Y, E_1) = \sup_{s > 0; \ E(s) > E_1} \frac{E(s) - E_1}{s} > 0.$$

Then for all bounded operators $V \geq 0$ on \mathcal{H} and Borel sets $B \subset]-\infty, E_1]$ we have

$$\chi_B(H_0 + V) Y \chi_B(H_0 + V) \geq \kappa \chi_B(H_0 + V).$$
Proof of the abstract UCPSP

Fix $E_1 \in]E(0), E(\infty)[$. For all Borel sets $B \subset]-\infty, E_1]$ we have, writing $P_V(B) = \chi_B(H_0 + V)$,

$$P_V(B)(H_0 + V)P_V(B) \leq E_1 P_V(B).$$
Proof of the abstract UCPSP

Fix $E_1 \in]E(0), E(\infty)[$. For all Borel sets $B \subset]-\infty, E_1]$ we have, writing $P_V(B) = \chi_B(H_0 + V)$,

$$P_V(B)(H_0 + V)P_V(B) \leq E_1 P_V(B).$$

Since $E_1 \in]E(0), E(\infty)[$, there is $s > 0$ such that $E(s) > E_1$.
Proof of the abstract UCPSP

Fix $E_1 \in]E(0), E(\infty)[$. For all Borel sets $B \subset]-\infty, E_1]$ we have, writing $P_V(B) = \chi_B(H_0 + V)$,

$$P_V(B)(H_0 + V)P_V(B) \leq E_1 P_V(B).$$

Since $E_1 \in]E(0), E(\infty)[$, there is $s > 0$ such that $E(s) > E_1$. Then,

$$P_V(B)(H(s) + V - sY - E_1)P_V(B) = P_V(B)(H_0 + V - E_1)P_V(B) \leq 0,$$
Proof of the abstract UCPSP

Fix $E_1 \in]E(0), E(\infty)[$. For all Borel sets $B \subset]-\infty, E_1]$ we have, writing $P_V(B) = \chi_B(H_0 + V)$,

$$P_V(B)(H_0 + V)P_V(B) \leq E_1 P_V(B).$$

Since $E_1 \in]E(0), E(\infty)[$, there is $s > 0$ such that $E(s) > E_1$. Then,

$$P_V(B)(H(s) + V - sY - E_1)P_V(B) = P_V(B)(H_0 + V - E_1)P_V(B) \leq 0,$$

and hence, using $V \geq 0$,

$$sP_V(B)YP_V(B) \geq P_V(B)(H(s) + V - E_1)P_V(B) \geq P_V(B)(H(s) - E_1)P_V(B) \geq (E(s) - E_1)P_V(B).$$
Proof of the abstract UCPSP

Fix $E_1 \in]E(0), E(\infty)[$. For all Borel sets $B \subset]-\infty, E_1]$ we have, writing

$$P_V(B) = \chi_B(H_0 + V),$$

$$P_V(B)(H_0 + V)P_V(B) \leq E_1 P_V(B).$$

Since $E_1 \in]E(0), E(\infty)[$, there is $s > 0$ such that $E(s) > E_1$. Then,

$$P_V(B)(H(s) + V - sY - E_1)P_V(B) = P_V(B)(H_0 + V - E_1)P_V(B) \leq 0,$$

and hence, using $V \geq 0$,

$$sP_V(B)YP_V(B) \geq P_V(B)(H(s) + V - E_1)P_V(B) \geq P_V(B)(H(s) - E_1)P_V(B) \geq (E(s) - E_1)P_V(B).$$

We conclude that

$$\chi_B(H_0 + V) Y \chi_B(H_0 + V) \geq \kappa \chi_B(H_0 + V).$$
Localization in a fixed interval at high disorder

Theorem

Let $H_{\omega,\lambda}$ be an ergodic Anderson Hamiltonian with disorder $\lambda > 0$, and suppose the single-site probability distribution μ has a bounded density (or is uniformly Hölder continuous).

By complete localization on an interval I we mean that for all $E \in I$ there exists $\delta(E) > 0$ such that we can perform the bootstrap multiscale analysis on the interval $(E - \delta(E), E + \delta(E))$, obtaining Anderson and dynamical localization.

This theorem was previously known only with a covering condition $U(\Lambda) \geq \alpha \chi_{\Lambda}$, $\alpha > 0$, in which case $E(\infty) = \infty$.

This theorem holds for crooked Anderson Hamiltonians with appropriate hypotheses on the single site probability distributions μ_j.
Theorem

Let $H_{\omega,\lambda}$ be an ergodic Anderson Hamiltonian with disorder $\lambda > 0$, and suppose the single-site probability distribution μ has a bounded density (or is uniformly Hölder continuous).

Then, given $E_1 \in]0, E(\infty)[$, there exists $\lambda(E_1) < \infty$, such that $H_{\omega,\lambda}$ exhibits complete localization on the interval $[0, E_1[$ for all $\lambda \geq \lambda(E_1)$.

By complete localization on an interval I we mean that for all $E \in I$ there exists $\delta(E) > 0$ such that we can perform the bootstrap multiscale analysis on the interval $(E - \delta(E), E + \delta(E))$, obtaining Anderson and dynamical localization.

This theorem was previously known only with a covering condition $U(\Lambda) \geq \alpha \chi(\Lambda)$, $\alpha > 0$, in which case $E(\infty) = \infty$.

This theorem holds for crooked Anderson Hamiltonians with appropriate hypotheses on the single site probability distributions μ_j.

Abel Klein

Unique continuation principle for spectral projections
Localization in a fixed interval at high disorder

Theorem

Let $H_{\omega, \lambda}$ be an ergodic Anderson Hamiltonian with disorder $\lambda > 0$, and suppose the single-site probability distribution μ has a bounded density (or is uniformly Hölder continuous).

Then, given $E_1 \in]0, E(\infty)[$, there exists $\lambda(E_1) < \infty$, such that $H_{\omega, \lambda}$ exhibits complete localization on the interval $[0, E_1]$ for all $\lambda \geq \lambda(E_1)$.

By complete localization on an interval I we mean that for all $E \in I$ there exists $\delta(E) > 0$ such that we can perform the bootstrap multiscale analysis on the interval $(E - \delta(E), E + \delta(E))$, obtaining Anderson and dynamical localization.
Localization in a fixed interval at high disorder

Theorem

Let $H_{\omega,\lambda}$ be an ergodic Anderson Hamiltonian with disorder $\lambda > 0$, and suppose the single-site probability distribution μ has a bounded density (or is uniformly Hölder continuous).

Then, given $E_1 \in [0, E(\infty)]$, there exists $\lambda(E_1) < \infty$, such that $H_{\omega,\lambda}$ exhibits complete localization on the interval $[0, E_1]$ for all $\lambda \geq \lambda(E_1)$.

By complete localization on an interval I we mean that for all $E \in I$ there exists $\delta(E) > 0$ such that we can perform the bootstrap multiscale analysis on the interval $(E - \delta(E), E + \delta(E))$, obtaining Anderson and dynamical localization.

This theorem was previously known only with a covering condition $U^{(\Lambda)} \geq \alpha \chi_{\Lambda}$, $\alpha > 0$, in which case $E(\infty) = \infty$.
Localization in a fixed interval at high disorder

Theorem

Let $H_{\omega,\lambda}$ be an ergodic Anderson Hamiltonian with disorder $\lambda > 0$, and suppose the single-site probability distribution μ has a bounded density (or is uniformly Hölder continuous).

Then, given $E_1 \in]0, E(\infty)[$, there exists $\lambda(E_1) < \infty$, such that $H_{\omega,\lambda}$ exhibits complete localization on the interval $[0, E_1]$ for all $\lambda \geq \lambda(E_1)$.

By complete localization on an interval I we mean that for all $E \in I$ there exists $\delta(E) > 0$ such that we can perform the bootstrap multiscale analysis on the interval $(E - \delta(E), E + \delta(E))$, obtaining Anderson and dynamical localization.

This theorem was previously known only with a covering condition $U(\Lambda) \geq \alpha \chi_\Lambda$, $\alpha > 0$, in which case $E(\infty) = \infty$.

This theorem holds for crooked Anderson Hamiltonians with appropriate hypotheses on the single site probability distributions μ_j.
References

doi:10.1007/s00220-013-1795-x