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Schrodinger operators

We consider a Schrodinger operator
H=-A+V on L?RY),

where A is the Laplacian operator and V is a bounded potential.
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Schrodinger operators

We consider a Schrodinger operator
H=-A+V on L?RY),
where A is the Laplacian operator and V is a bounded potential.

@ We define balls and boxes:

d
B(X,S)::{yeRd;Iy—x|<5}, with  [x| = |x|, = Z|xj|2>
=1

AL(x) = {y eRY; |y —x|. < %}, with  [x|, = _max |x;] .

=1,z,...,
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Schrodinger operators

We consider a Schrodinger operator
H=-A+V on L?RY),
where A is the Laplacian operator and V is a bounded potential.

@ We define balls and boxes:

d
B(X,S)::{yeRd;|y—x|<5}, with  [x| = |x|, = Z|xj|2>
=1

A ::{ RY; |y — L}, ith = il
L) =y ERGly —xlo <3 g, with |x].:= max x|

@ Hy denotes the restriction of H to the the box A ¢ RY:
Hpn=—Ap+ VA on L%(A).

e A, is the Laplacian on A with either Dirichlet or periodic boundary
condition.
o V) is the restriction of V to A..
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Unique continuation principle for spectral projections

Unique continuation principle for spectral projections
A UCPSP on a box A is an estimate of the form

Xi(HAWAXi(Hr) > kX1(Hp) on L2(A),

where X, is the characteristic function of an interval | C R,
W >0 is a potential, and k¥ > 0 is a constant.
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Unique continuation principle for spectral projections

Unique continuation principle for spectral projections
A UCPSP on a box A is an estimate of the form

Xi(HAWAXi(Hr) > kX1(Hp) on L2(A),

where X, is the characteristic function of an interval | C R,
W >0 is a potential, and k¥ > 0 is a constant.

e If W >k > 0 (covering condition) the UCPSP is trivial.
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Unique continuation principle for spectral projections

Unique continuation principle for spectral projections

A UCPSP on a box A is an estimate of the form
Li(HAWA X (HA) > k2 (HA) on  L%(A),

where X, is the characteristic function of an interval | C R,
W >0 is a potential, and k¥ > 0 is a constant.

e If W >k > 0 (covering condition) the UCPSP is trivial.

e Combes, Hislop and Klopp (2003): The UCPSP holds for bounded
Z9-periodic potentials V and W, W >0 with W > 0 on an open set,
boxes A = A/ (xp) C RY with L € N, Hp with periodic boundary
condition, with a constant k¥ > 0 depending on sup/ (and d, V, W),
but not on the box A. Their proof uses the unique continuation
principle and Floquet theory.
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Unique continuation principle for spectral projections

Unique continuation principle for spectral projections

A UCPSP on a box A is an estimate of the form
Li(HAWA X (HA) > k2 (HA) on  L%(A),

where X, is the characteristic function of an interval | C R,
W >0 is a potential, and k¥ > 0 is a constant.

e If W >k > 0 (covering condition) the UCPSP is trivial.

e Combes, Hislop and Klopp (2003): The UCPSP holds for bounded
79-periodic potentials V and W, W >0 with W > 0 on an open set,
boxes A = Ay (xp) € RY with L € N, Hp with periodic boundary
condition, with a constant k¥ > 0 depending on sup/ (and d, V, W),
but not on the box A. Their proof uses the unique continuation
principle and Floquet theory.

e Germinet and Klein (2013) proved a modified version of the CHK
UCPSP, using Bourgain and Kenig's quantitative unique continuation
principle and (some) Floquet theory, obtaining control of the constant
K in terms of the relevant parameters.
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Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:

[m]

=

Abel Klein Unique continuation principle for spectral projections



Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrddinger operator on L?(R?).
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Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrddinger operator on L?(R?).
@ Given an energy Eg >0 and & E]O,%], define y=17y(d,K,8) > 0 by

2
P= %5”"’(1*’“), where K = K(V,Ey) =2 V|| + E.
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Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrddinger operator on L?(R?).
@ Given an energy Eg >0 and & E]O,%], define y=17y(d,K,8) > 0 by

2
P= %5”"’(1*’“), where K = K(V,Ey) =2 V|| + E.

Then, given
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Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrddinger operator on L?(R?).
@ Given an energy Eg >0 and & E]O,%], define y=17y(d,K,8) > 0 by

2
P= %5”"’@“‘3), where K = K(V,Ey) =2 V|| + E.

Then, given
o {Vk}reze C R with B(yk,8) C Ai(k) for all k € Z9,
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Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrddinger operator on L?(R?).
@ Given an energy Eg >0 and & E]O,%], define y=17y(d,K,8) > 0 by

2
P= %5“”‘*(”’“), where K =K(V,E)=2]|V|..+ Eo.

Then, given
o {Vk}reze C R with B(yk,8) C Ai(k) for all k € Z9,
@ a closed interval | C]—oo, Eg] with [/] <2y,

Abel Klein Unique continuation principle for spectral projections



Theorem (UCPSP)
There exists a constant My > 0, depending only on d, such that:

o Let H=—A+V be a Schrddinger operator on L?(R?).
@ Given an energy Eg >0 and & E]O,%], define y=17y(d,K,8) > 0 by

2
P= %5“”‘*(”’“), where K =K(V,E)=2]|V|..+ Eo.
Then, given
o {Vk}reze C R with B(yk,8) C Ai(k) for all k € Z9,

@ a closed interval | C]—oo, Eg] with [/] <2y,
@ a box A =A.(x0) with xp € R? and L > 114+/d,
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Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrddinger operator on L?(R?).
@ Given an energy Eg >0 and & E]O,%], define y=17y(d,K,8) > 0 by

2
P= %5“”‘*(”’“), where K =K(V,E)=2]|V|..+ Eo.

Then, given
o {Vk}reze C R with B(yk,8) C Ai(k) for all k € Z9,
@ a closed interval | C]—oo, Eg] with [/] <2y,
@ a box A =A.(x0) with xp € R? and L > 114+/d,
@ a potential

w > Z X B(yi.8):
keZd, Ay (k)CA
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Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrddinger operator on L?(R?).
@ Given an energy Eg >0 and & E]O,%], define y=17y(d,K,8) > 0 by

2
P= %5“”‘*(”’“), where K =K(V,E)=2]|V|..+ Eo.

Then, given
o {Vk}reze C R with B(yk,8) C Ai(k) for all k € Z9,
@ a closed interval | C]—oo, Eg] with [/] <2y,
@ a box A =A.(x0) with xp € R? and L > 114+/d,
@ a potential

w > Z X B(yi.8):
keZd, Ay (k)CA

we have
Xi(HOWW x,(HA) > %% (Ha) on L2(A).
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Comments on the UCPSP

@ Rojas-Molina and Veseli¢ (2013) proved, under the hypotheses of the
Theorem, that for boxes A = A;(xg) with xo € Z9 and L € Nogq, if @
is an eigenfunction of Hp with eigenvalue E €] — oo, Eg], then

2
H W(A)wH2 > kg, | w3 with kg, > 0.
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Comments on the UCPSP

@ Rojas-Molina and Veseli¢ (2013) proved, under the hypotheses of the
Theorem, that for boxes A = A;(xg) with xo € Z9 and L € Nogq, if @
is an eigenfunction of Hp with eigenvalue E €] — oo, Eg], then

2
H W(A)WH2 > kg, lwl2 with kg, > 0.

This is just the UCPSP when | = {E}.
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Comments on the UCPSP

@ Rojas-Molina and Veseli¢ (2013) proved, under the hypotheses of the
Theorem, that for boxes A = A;(xg) with xo € Z9 and L € Nogq, if @
is an eigenfunction of Hp with eigenvalue E €] — oo, Eg], then

2
H W(A)WH2 > kg, lwl2 with kg, > 0.

This is just the UCPSP when / = { E}.Their proof uses the
quantitative unique continuation principle (Bourgain and Kenig).
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Comments on the UCPSP

@ Rojas-Molina and Veseli¢ (2013) proved, under the hypotheses of the
Theorem, that for boxes A = A;(xg) with xo € Z9 and L € Nogq, if @
is an eigenfunction of Hp with eigenvalue E €] — oo, Eg], then

2
H W(A)IIIH2 > KE, ”1[ng with Ke, > 0.

This is just the UCPSP when / = { E}.Their proof uses the
quantitative unique continuation principle (Bourgain and Kenig).

@ Our Theorem is derived from the quantitative unique continuation
principle as in Bourgain and Klein using the “dominant boxes”
introduced by Rojas-Molina and Veselic¢.
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Comments on the UCPSP

@ Rojas-Molina and Veseli¢ (2013) proved, under the hypotheses of the
Theorem, that for boxes A = A;(xg) with xo € Z9 and L € Nogq, if @
is an eigenfunction of Hp with eigenvalue E €] — oo, Eg], then

2
H W(A)IIIH2 > KE, ”1[ng with Ke, > 0.

This is just the UCPSP when / = { E}.Their proof uses the
quantitative unique continuation principle (Bourgain and Kenig).

@ Our Theorem is derived from the quantitative unique continuation
principle as in Bourgain and Klein using the “dominant boxes”
introduced by Rojas-Molina and Veseli¢.

@ The UCPSP is a crucial ingredient for proving Wegner estimates for
one and multi-particle Anderson Hamiltonians. The UCPSP replaces
the covering condition.
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Quantitative unique cont. principle (Bourgain-Klein)

Let Q C RY open. Let y € H?(Q) and let { € L?(f2) be defined by
—Ay+Vy=_ ae on Q

where V' is a bounded real measurable function on Q, || V||, < K < eo.
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Quantitative unique cont. principle (Bourgain-Klein)
Let Q C RY open. Let y € H?(Q) and let { € L?(f2) be defined by
—Ay+Vy=_ ae on Q

where V' is a bounded real measurable function on Q, || V||, < K < eo.
Let © C Q2 be a bounded measurable set where Hl//erz > 0.
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Quantitative unique cont. principle (Bourgain-Klein)

Let Q C RY open. Let y € H?(Q) and let { € L?(f2) be defined by
—Ay+Vy=_ ae on Q

where V' is a bounded real measurable function on Q, || V||, < K < eo.
Let © C Q2 be a bounded measurable set where Hl//erz > 0.

Set Q(x,0):=suply—x| for xe€Q.
yEeo
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Quantitative unique cont. principle (Bourgain-Klein)

Let Q C RY open. Let y € H?(Q) and let { € L?(f2) be defined by
—Ay+Vy=_ ae on Q

where V' is a bounded real measurable function on Q, || V||, < K < eo.
Let © C Q2 be a bounded measurable set where Hl//erz > 0.

Set Q(x,0):=suply—x| for xe€Q.
yEeo

Let xo€Q\O satisfy Q= Q(x0,0)>1 and B(x,6Q+2)C Q.
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Quantitative unique cont. principle (Bourgain-Klein)

Let Q C RY open. Let y € H?(Q) and let { € L?(f2) be defined by
—Ay+Vy=_ ae on Q

where V is a bounded real measurable function on Q, ||V||.. < K < oo,
Let © C Q2 be a bounded measurable set where Hl,llerz > 0.

Set Q(x,0):=suply—x| for xe€Q.
yEeo

Let xo€Q\O satisfy Q= Q(x0,0)>1 and B(x,6Q+2)C Q.

Then, given
0< & <min {dist(Xo,@),%}>
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Quantitative unique cont. principle (Bourgain-Klein)

Let Q C RY open. Let y € H?(Q) and let { € L?(f2) be defined by
—Ay+Vy=_ ae on Q

where V is a bounded real measurable function on Q, ||V||.. < K < oo,
Let © C Q2 be a bounded measurable set where Hl,uerz > 0.

Set Q(x,0):=suply—x| for xe€Q.
yEeo

Let xo€Q\O satisfy Q= Q(x0,0)>1 and B(x,6Q+2)C Q.

Then, given
0< & <min {dist(Xo,@),%}a

we have
2 4 llvxall,
5\ ™o (13 ) (@3 s [0
(o) ( 2> lwxol’3 < [|wXsgos) 15+ 152all3,

where my > 0 is a constant depending only on d.
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Corollary to the quantitative unique continuation principle

Corollary
There exists a constant My > 0, depending only on d, such that:
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Corollary to the quantitative unique continuation principle
Corollary

There exists a constant My > 0, depending only on d, such that:

o Let H=—A+V be a Schrédinger operator on L>(R9), where V is a
bounded potential with ||V||_ < K.
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Corollary to the quantitative unique continuation principle

Corollary
There exists a constant My > 0, depending only on d, such that:

o Let H=—A+V be a Schrédinger operator on L>(R9), where V is a
bounded potential with ||V||_ < K.

e Fix § €]0,3] and sites {yi}cz0 C RY with B(yi,8) C Ai(k).
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Unique continuation principle for spectral projections

Corollary to the quantitative unique continuation principle

Corollary
There exists a constant My > 0, depending only on d, such that:

o Let H=—A+V be a Schrédinger operator on L>(R9), where V is a
bounded potential with ||V||_ < K.

e Fix § €]0,3] and sites {yi}cz0 C RY with B(yi,8) C Ai(k).
o Consider a box A = Aj(xgp) with xo € RY and L > 114+/d.
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Corollary to the quantitative unique continuation principle

Corollary
There exists a constant My > 0, depending only on d, such that:

o Let H=—A+V be a Schrédinger operator on L>(R9), where V is a
bounded potential with ||V||_ < K.

e Fix § €]0,3] and sites {yi}cz0 C RY with B(yi,8) C Ai(k).
o Consider a box A = Aj(xgp) with xo € RY and L > 114+/d.
o Set WM =¥, a0 n (k) A X B(vk.5)-
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Unique continuation principle for spectral projections

Corollary to the quantitative unique continuation principle

Corollary

There exists a constant My > 0, depending only on d, such that:

o Let H=—A+V be a Schrédinger operator on L>(R9), where V is a
bounded potential with ||V||_ < K.

e Fix § €]0,3] and sites {yi}cz0 C RY with B(yi,8) C Ai(k).
o Consider a box A = Aj(xgp) with xo € RY and L > 114+/d.
o Set WM =¥, a0 n (k) A X B(vk.5)-

Then for all real-valued y € Z(Hp) = Z(Ap) we have (on L2(/\))

Abel Klein Unique continuation principle for spectral projections




Unique continuation principle for spectral projections

Corollary to the quantitative unique continuation principle

Corollary

There exists a constant My > 0, depending only on d, such that:

o Let H=—A+V be a Schrédinger operator on L>(R9), where V is a
bounded potential with ||V||_ < K.

e Fix § €]0,3] and sites {yi}cz0 C RY with B(yi,8) C Ai(k).
o Consider a box A = Aj(xgp) with xo € RY and L > 114+/d.
o Set WM =¥, a0 n (k) A X B(vk.5)-
Then for all real-valued w € Z(Hp) = Z(Ap) we have (on L2(N))
2
6Md(1+K3) H

viE< Y [Wxspes st IHAVIE
keZd, N (k)CA

= w3
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Unique continuation principle for spectral projections

Proof of the UCPSP

Let £o >0 and / = [E —B,E+ B] C] — oo, Eg] a closed interval.

Since Hp > —||V||.., we assume E € [—||V||.., Eo] without loss of
generality, so

IV = Elle < V] +max{Eo, |V].} < K=2[V|.. + E.
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Unique continuation principle for spectral projections

Proof of the UCPSP

Let £o >0 and / = [E —B,E+ B] C] — oo, Eg] a closed interval.

Since Hp > —||V||.., we assume E € [—||V||.., Eo] without loss of
generality, so

Moreover, for any box A we have

I(Ha = E)wlla <Bllwlly for w=2xi(Ha)y.

Abel Klein Unique continuation principle for spectral projections



Unique continuation principle for spectral projections

Proof of the UCPSP

Let £o >0 and / = [E —B,E+ B] C] — oo, Eg] a closed interval.

Since Hp > —||V||.., we assume E € [—||V||.., Eo] without loss of
generality, so

Moreover, for any box A we have

I(Ha=E)wla <Bllwlly for w=2xi(HA)y.
Let A be a box as in the Corollary and v = X;(Hx)y real-valued.
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Unique continuation principle for spectral projections

Proof of the UCPSP

Let £o >0 and / = [E —B,E+ B] C] — oo, Eg] a closed interval.

Since Hp > —||V||.., we assume E € [—||V||.., Eo] without loss of
generality, so

IV = Elle < V] +max{Eo, |V].} < K=2[V|.. + E.

Moreover, for any box A we have

I(Ha = E)wlla <Bllwlly for w=2xi(Ha)y.

Let A be a box as in the Corollary and v = X;(Hx)y real-valued.
It follows from the Corollary applied to H— E that

5 05) 2 < WO+ - Bl < W[+ B2 w3,
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Unique continuation principle for spectral projections

Proof of the UCPSP

Let £o >0 and / = [E —B,E+ B] C] — oo, Eg] a closed interval.

Since Hp > —||V||.., we assume E € [—||V||.., Eo] without loss of
generality, so

IV = Elle < V] +max{Eo, |V].} < K=2[V|.. + E.

Moreover, for any box A we have

I(Ha = E)wlla <Bllwlly for w=2xi(Ha)y.

Let A be a box as in the Corollary and v = X;(Hx)y real-valued.
It follows from the Corollary applied to H— E that

2 2 2
5 4% 2 < WO+ 1~ By < WO+ 5 w3
If B2 <y?:= %SM"(HK%), ie., || <2y, we get

2
PlviE < [wy| e Pri(H) < i(HOWOKi(Hy).
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Unique continuation principle for spectral projections

Proof of the Corollary from the QUCP

Take A = Ar(0) with L € Nogg. We extend functions @ on A to functions
V and @ on R? and V to a potential V on R9 so

(A V)y=(—A+ V).

Abel Klein Unique continuation principle for spectral projections



Unique continuation principle for spectral projections

Proof of the Corollary from the QUCP

Take A = Ar(0) with L € Nogq. We extend functions @ on A to functions
V and @ on R? and V to a potential V on RY so

(“A 1 V)y=(—A+ V).

Take Y € Nogq, 9< Y < 5. Since L is odd, we have A= Jcpnze M (k).
It follows that for all @ € L?(A) we have

Y @avwlls < 2Y)|all3-

keNnzZd

Abel Klein Unique continuation principle for spectral projections



Unique continuation principle for spectral projections

Proof of the Corollary from the QUCP

Take A = Ar(0) with L € Nogq. We extend functions @ on A to functions
V and @ on R? and V to a potential V on RY so

(“A 1 V)y=(—A+ V).

Take Y € Nogq, 9< Y < 5. Since L is odd, we have A= Jcpnze M (k).
It follows that for all @ € L?(A) we have

Y @avwlls < 2Y)|all3-
keAnzd

We now fix y € Z(An). Following Rojas-Molina and Veseli¢, we call a site
k € \ dominating (for y) if

2
27

lvmwlls = 5wy 19wl
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Unique continuation principle for spectral projections

Proof of the Corollary from the QUCP

Take A = Ar(0) with L € Nogq. We extend functions @ on A to functions
V and @ on R? and V to a potential V on RY so

(“A 1 V)y=(—A+ V).

Take Y € Nogq, 9< Y < 5. Since L is odd, we have A= Jcpnze M (k).
It follows that for all @ € L?(A) we have

Y @y iolla < (2Y)9 [loall3-
keAnzd

We now fix y € Z(An). Following Rojas-Molina and Veseli¢, we call a site
k € \ dominating (for y) if

2
27

2 1 ~
[vauwll; = 222v)? [Wny )]
and note that, letting D c ANZ? denote the collection of dominating sites,

Y vl = 3l
keD
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Proof of the Corollary-continued
If k € D we apply the QUCP with Q = Ay (k) and © = A;(k), obtaining

6mg<1+K%> 2

Inscolls < [V o], + |Gl
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Unique continuation principle for spectral projections

Proof of the Corollary-continued

If k € D we apply the QUCP with Q = Ay(k) and © = A1(k), obtaining

6m;<1+K%> 2

Inscolls < [V o], + |Gl

where { = (—A+ V)y, Y is appropriately chosen, Y < 40V/d < % and
the map J: D — ANZ9 is defined appropriately so
J(k) € Ny (k) and #J7L({j}) < 2 for all j.
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Unique continuation principle for spectral projections

Proof of the Corollary-continued

If k € D we apply the QUCP with Q = Ay(k) and © = A1(k), obtaining
, 2 2 |~ 2
m,(1+K3 2
575y |2 < |vema|,+ |[Grven

where { = (—A+ V)y, Y is appropriately chosen, Y < 40V/d < % and
the map J: D — ANZ9 is defined appropriately so

J(k) € Ny (k) and #J7L({j}) < 2 for all ;.

: = . 2

Summing over k € D and using ¥, 5 H‘V/\l(k)Hz > % ||l[//\H§ we get

, 2
L) a2 <2 Y [wspes 2+ @Y1
keNnzd
<2 Y [[Wsla+ 80V [IEA3.
keNnzd
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Unique continuation principle for spectral projections

Proof of the Corollary-continued

If k € D we apply the QUCP with Q = Ay(k) and © = A1(k), obtaining
, 2 2 |~ 2
m,(1+K3 2
575y |2 < |vema|,+ |[Grven

where { = (—A+ V)y, Y is appropriately chosen, Y < 40V/d < % and
the map J: D — ANZ9 is defined appropriately so

J(k) € Ny (k) and #J7L({j}) < 2 for all ;.

: = . 2

Summing over k € D and using ¥, 5 H‘V/\l(k)Hz > % ||l[//\H§ we get

, 2
L) a2 <2 Y [wspes 2+ @Y1
keNnzd
<2 Y [[Wsla+ 80V [IEA3.
keNnzd

which implies (with a different constant M, > 0)

2
s ) 2 < Y Wges |2+ 162,
keNnzd
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Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrédinger operator
Hy:=Ho+ Vs on L2(RY)
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Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrédinger operator
Hy:=Ho+ Vs on L2(RY)
Q@ Ho=—-A+ VO with V() a bounded potential and inf o(Hp) = 0.
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Crooked Anderson Hamiltonians
A crooked Anderson Hamiltonian is the random Schrédinger operator
Hy:=Ho+ Vs on L2(RY)
Q@ Ho=—-A+ VO with V() a bounded potential and inf o(Hp) = 0.

@ V|, is a crooked alloy-type random potential:

Vo(x) =}, ojui(x), with u(x) = vi(x—y),
jezd
where, for some 6_ €]0, %] and u_, 6,1, M €]0,c0[:

Abel Klein Unique continuation principle for spectral projections



Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrédinger operator
Hy:=Ho+ Vs on L2(RY)
Q@ Ho=—-A+ VO with V() a bounded potential and inf o(Hp) = 0.
@ V|, is a crooked alloy-type random potential:
Vp(x) = Z wjui(x), with uj(x) = vi(x—y),
jezd
where, for some 6_ €]0, %] and u_, 6,1, M €]0,c0[:
© {yj}cp0 are sites in RY with B(y;,8-) C A1(j) for all j € Z7;
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Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrédinger operator
Hy:=Ho+ Vs on L2(RY)
Q@ Ho=—-A+ VO with V() a bounded potential and inf o(Hp) = 0.
@ V|, is a crooked alloy-type random potential:
Vp(x) = Z wjui(x), with uj(x) = vi(x—y),
jezd
where, for some 6_ €]0, %] and u_, 6,1, M €]0,c0[:
© {yj}cp0 are sites in RY with B(y;,8-) C A1(j) for all j € Z7;
@ the single site potentials {Vj}jezd are measurable functions on R with
u-Xpos )< v < X/\er(O) for all jez9;
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Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrédinger operator
Hy:=Ho+ Vs on L2(RY)
Q@ Ho=—-A+ VO with V() a bounded potential and inf o(Hp) = 0.
@ V|, is a crooked alloy-type random potential:
Vo(x) = ), ojui(x), with u;(x)=vj(x—y)),
jezd
where, for some 6_ €]0, %] and u_, 6,1, M €]0,c0[:
© {yj}cp0 are sites in RY with B(y;,8-) C A1(j) for all j € Z7;
@ the single site potentials {Vj}jezd are measurable functions on R with
U-Zp(0.5) <V < Xns (o) forall je VAR
© = {;};cz0 is a family of independent random variables whose
probability distributions {‘Uj}jezd are non-degenerate with
suppty C [0,M] forall jezZ.
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Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrédinger operator
Hy:=Ho+ Vs on L2(RY)
Q@ Ho=—-A+ VO with V() a bounded potential and inf o(Hp) = 0.
@ V|, is a crooked alloy-type random potential:
Vp(x) = Z wjui(x), with uj(x) = vi(x—y),
jezd
where, for some 6_ €]0, %] and u_,04,M €]0,00[:
© {yj}cp0 are sites in RY with B(y;,8-) C A1(j) for all j € Z7;
@ the single site potentials {Vj}jezd are measurable functions on R with
u-Xpo,s) SV < X/\5+(o) for all je€Z%
© = {;};cz0 is a family of independent random variables whose
probability distributions {‘Uj}jezd are non-degenerate with
suppty C [0,M] forall jezZ.
Remark: If V(%) is gZ9-periodic with g € N, and y; = j, vj = v, 1 = Lo
for all j € Z9, then Hy, is the ergodic (usual) Anderson Hamiltonian.
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Optimal Wegner estimates

Finite volume crooked Anderson Hamiltonians

We define finite volume crooked Anderson Hamiltonians on a box

A=NAr(x0), xo € R? and L > 0, with either Dirichlet or periodic boundary
condition, by

Hoa=Hop+VEY on L2(A),
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Optimal Wegner estimates

Finite volume crooked Anderson Hamiltonians

We define finite volume crooked Anderson Hamiltonians on a box

A=NAr(x0), xo € R? and L > 0, with either Dirichlet or periodic boundary
condition, by

Hoa=Hop+VEY on L2(A),
where

@ Hoa = (Ho), is the restriction of Hyp to A with the specified boundary
condition,
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Optimal Wegner estimates

Finite volume crooked Anderson Hamiltonians

We define finite volume crooked Anderson Hamiltonians on a box
A=NAr(x0), xo € R? and L > 0, with either Dirichlet or periodic boundary
condition, by

Hoa=Hop+VEY on L2(A),
where

@ Hoa = (Ho), is the restriction of Hyp to A with the specified boundary
condition,

VCS,A)(X) = ) wjuj(x) for xeA.
jennzd
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Finite volume crooked Anderson Hamiltonians

We define finite volume crooked Anderson Hamiltonians on a box
A=NAr(x0), xo € R? and L > 0, with either Dirichlet or periodic boundary
condition, by

Hoa=Hop+VEY on L2(A),

where
@ Hoa = (Ho), is the restriction of Hyp to A with the specified boundary
condition,
°
VCS,A)(X) = ) wjuj(x) for xeA.
jennzd
We also set
U(x) := Zjezduf(x) and U(A)(X) = Z uj(x),
jennzd
W(x)i= Y Xp(,s9(x) and WV(x):= XB(y.5)-
jezd JeZd A (j)CA
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Remark and notation

Note that

0<Wh <

[m]

=
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Remark and notation

Note that
0< Wy < 2Up.

We will use the following notation:
o PyA(B):=Xg(Hwyn) for a Borel set B C RY.
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Remark and notation

Note that
0< Wy < 2Up.

We will use the following notation:
o PyA(B):=2Xg(Hpn) for a Borel set B C RY.

@ The concentration function of the probability measure u is defined by

Su(t) :=supu([a,a+t]) for t>0.

acR
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Remark and notation

Note that
0< Wy < 2Up.

We will use the following notation:
o PyA(B):=2Xg(Hpn) for a Borel set B C RY.

@ The concentration function of the probability measure u is defined by

Su(t) :=supu([a,a+t]) for t>0.

acR

Sa(t) := max S,.(t).

jennzd Hi
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Optimal Wegner estimates

An optimal Wegner estimate for Anderson Hamiltonians is an estimate of
the form
E{tr Poa()} < CSA(IIIA-
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Optimal Wegner estimates

An optimal Wegner estimate for Anderson Hamiltonians is an estimate of
the form
E{tr Poa()} < CSA(IIIA-

e Combes, Hislop (1994) proved optimal Wegner estimates for ergodic
Anderson Hamiltonians with a covering condition.
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Optimal Wegner estimates

An optimal Wegner estimate for Anderson Hamiltonians is an estimate of

the form
E {trPoa(1)} < CSA(II)IAl-

e Combes, Hislop (1994) proved optimal Wegner estimates for ergodic
Anderson Hamiltonians with a covering condition.

e Combes, Hislop, Klopp (2007) proved optimal Wegner estimates for
ergodic Anderson Hamiltonians with periodic boundary condition and
boxes A = A/ (xp) with L a multiple of the period.

Their proof uses the UCSP for the (nonrandom) periodic operator Hp.
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Optimal Wegner estimates

An optimal Wegner estimate for Anderson Hamiltonians is an estimate of
the form
E{tr Poa(/)} < CSA(IIDIAl-

e Combes, Hislop (1994) proved optimal Wegner estimates for ergodic
Anderson Hamiltonians with a covering condition.

e Combes, Hislop, Klopp (2007) proved optimal Wegner estimates for
ergodic Anderson Hamiltonians with periodic boundary condition and
boxes A = A/ (xp) with L a multiple of the period.

Their proof uses the UCSP for the (nonrandom) periodic operator Hp.

@ Rojas-Molina and Veseli¢ (2013) proved Wegner estimates for
Delone-Anderson models, optimal up to an additional factor:

E {tr Poa(1)} < C llog|1]|* Sa(lI]) ]
They used their single energy UCSP for the (nonrandom) operator Hp.
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Optimal Wegner estimates

An optimal Wegner estimate for Anderson Hamiltonians is an estimate of
the form
E{tr Poa(/)} < CSA(IIDIAl-

e Combes, Hislop (1994) proved optimal Wegner estimates for ergodic
Anderson Hamiltonians with a covering condition.

e Combes, Hislop, Klopp (2007) proved optimal Wegner estimates for
ergodic Anderson Hamiltonians with periodic boundary condition and
boxes A = A/ (xp) with L a multiple of the period.

Their proof uses the UCSP for the (nonrandom) periodic operator Hp.

@ Rojas-Molina and Veseli¢ (2013) proved Wegner estimates for
Delone-Anderson models, optimal up to an additional factor:

E {tr Poa(1)} < C llog|1]|* Sa(lI]) ]
They used their single energy UCSP for the (nonrandom) operator Hp.

@ Wegner estimates for crooked Anderson Hamiltonians imply
corresponding Wegner estimates for Delone-Anderson models.
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Optimal Wegner estimate for crooked Anderson Hamilts.

Using the UCPSP for the full random operator H,, we prove

Theorem

Let Hy, be a crooked Anderson Hamiltonian.
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Optimal Wegner estimate for crooked Anderson Hamilts.

Using the UCPSP for the full random operator H,, we prove
Theorem

Let Hy, be a crooked Anderson Hamiltonian. Given Ey > 0, define v > 0 by

2
My(1+K3
f:%&** ) where K=Ep+2([VOlla+ M| UL.).

and My > 0 is the constant in the UCPSP Theorem.
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— o 2 N e RO s Hma sl
Optimal Wegner estimate for crooked Anderson Hamilts.

Using the UCPSP for the full random operator H,, we prove
Theorem

Let Hy, be a crooked Anderson Hamiltonian. Given Ey > 0, define v > 0 by

2
My(1+K3
f:%&** ) where K=E+2(|VO+M|U].).

and My > 0 is the constant in the UCPSP Theorem.
Then for any closed interval | C| — o, Eg] with |I| <2y and any box
A = Ar(x0) with xo € RY and L > 114v/d + &,
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Optimal Wegner estimate for crooked Anderson Hamilts.

Using the UCPSP for the full random operator H,, we prove
Theorem

Let Hy, be a crooked Anderson Hamiltonian. Given Ey > 0, define v > 0 by

2
My(1+K3
f:%(s,"“ ) where K=E+2(|VO+M|U].).

and My > 0 is the constant in the UCPSP Theorem.
Then for any closed interval | C| — oo, Eg| with |I| < 2y and any box
A=A (x0) with xo € R and L > 114y/d + 8, we have

+ logd

_ _ 2 log2
E{trPon(1)} < Cys, v (W27 "1+ E))"  Sa(lI)IAI
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UCPSP — Optimal Wegner estimate

The theorem (optimal Wegner estimates) follows from the UCPSP
theorem and the following lemma.
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Optimal Wegner estimates

UCPSP — Optimal Wegner estimate

The theorem (optimal Wegner estimates) follows from the UCPSP
theorem and the following lemma.

Lemma

Let Hy, be a crooked Anderson Hamiltonian.
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Optimal Wegner estimates

UCPSP — Optimal Wegner estimate

The theorem (optimal Wegner estimates) follows from the UCPSP
theorem and the following lemma.

Lemma

Let Hy, be a crooked Anderson Hamiltonian.

Let | C] —oo, Eg] be a closed interval and N = \;(xp) a box centered at
xo € RY with L>2+8,.
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UCPSP — Optimal Wegner estimate

The theorem (optimal Wegner estimates) follows from the UCPSP
theorem and the following lemma.
Lemma

Let Hy, be a crooked Anderson Hamiltonian.
Let | C] —oo, Eg] be a closed interval and N = \;(xp) a box centered at
xo € RY with L>2+8,.

Suppose there exists a constant K > 0 such that

Poa(NUMPyA(1) > kP (1) with probability one.
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Optimal Wegner estimates

UCPSP — Optimal Wegner estimate

The theorem (optimal Wegner estimates) follows from the UCPSP
theorem and the following lemma.

Lemma

Let Hy, be a crooked Anderson Hamiltonian.

Let | C] —oo, Eg] be a closed interval and N = \;(xp) a box centered at
xo € RY with L>2+8,.

Suppose there exists a constant K > 0 such that
Poa(NUMPyA(1) > kP (1) with probability one.
Then

1+Iogd

B 2" " log2
E{trP@/\(/)} < Cdv5+7HV(O)Hw (K 2(1 + EO)) 5/\(“|) |A‘ .
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Proof of Lemma

We fix A and | C] — oo, B], let P = Py (/) U= U™. Then (Dirichlet bc)

[m]

=
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Proof of Lemma

We fix A and | C] — oo, B], let P = Py (/) U= U™. Then (Dirichlet bc)
trP < x 1tr PUP = x 1trVUPVU < x 2tr VUPUPVU = x2tr PUPU
= Kk 2tr PUPUP < k2(1+ Eg)tr PU(Hp A+ 1)t UP
<k (14 Eg)tr PU(Hop+1)1UP
=Kk %(1+ Eo)trUPU(Hop +1)7!
=k ?(1+E) Y tryuPVuTy,

ijennzd

Abel Klein Unique continuation principle for spectral projections



Proof of Lemma

We fix A and | C] — oo, B], let P = Py (/) U= U™. Then (Dirichlet bc)
trP < x 1tr PUP = x 1trVUPVU < x 2tr VUPUPVU = x2tr PUPU
= Kk 2tr PUPUP < k2(1+ Eg)tr PU(Hp A+ 1)t UP
<k (14 Eg)tr PU(Hop+1)1UP
=Kk %(1+ Eo)trUPU(Hop +1)7!
=k ?(1+E) Y tryuPVuTy,

ijennzd

where T =\/uj(Hoa+1) /g for i,jeANZe.
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Proof of Lemma

We fix A and | C] — oo, B], let P = Py (/) U= U™. Then (Dirichlet bc)
trP < x 1tr PUP = x 1trVUPVU < x 2tr VUPUPVU = x2tr PUPU
= Kk 2tr PUPUP < k2(1+ Eg)tr PU(Hp A+ 1)t UP
<k (14 Eg)tr PU(Hop+1)1UP
=Kk %(1+ Eo)trUPU(Hop +1)7!
=k ?(1+E) Y tryuPVuTy,

ijennzd

where T =\/uj(Hoa+1) /g for i,jeANZe.

We may now adapt an argument in in Combes, Hislop, Klopp obtaining

2 2t
EtrP < Cd,6+,v£,°) (k™ %(14 Eo)) SA(]) A
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Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrédinger operator

(S,") =H" +U on L2(R™), where H(():’a)) =AM 4 VCE,").

0,w
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Multi-particle Anderson Hamiltonians
The n-particle Anderson Hamiltonian is the random Schrédinger operator
(S,") = (()"a)) +U on L% R"™), where H(():’a)) =AM 4 V(f,").

@ A is the nd-dimensional Laplacian operator.
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Multi-particle Anderson Hamiltonians
The n-particle Anderson Hamiltonian is the random Schrédinger operator
((1,") = ((,") +U on L% R"™), where H(():’a)) =AM 4 V(f,").

@ A is the nd-dimensional Laplacian operator.
Q V(") is the random potential given by (x = (xl, <oy Xp) € RM)

Z V xi), with V() Za)kux k),
= n kezd

Abel Klein Unique continuation principle for spectral projections



Multi-particle Anderson Hamiltonians
The n-particle Anderson Hamiltonian is the random Schrédinger operator
(S,") = (()"a)) +U on L% R"™), where H(():g =AM 4 VU(J").

@ A is the nd-dimensional Laplacian operator.

Q V(") is the random potential given by (x = (xl, ., Xn) € R™)
Z V xi), with V Z oy u(x — k),
I=1,...,n kezd

@ ®={W},cy0 is a family of independent identically distributed random
variables whose common probability distribution u has a bounded
density p and satisfies {0, M} C suppu C [0, M, ] for some M, > 0;
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Multi-particle Anderson Hamiltonians
The n-particle Anderson Hamiltonian is the random Schrédinger operator

()= HD+U on L2(R™), where H{) = —AM 4V,

10,0

@ A is the nd-dimensional Laplacian operator.

Q V(") is the random potential given by (x = (xl, ., Xn) € R™)
Z V xi), with V Z oy u(x — k),
i=1,...,n kezd

IR}

@ ®={W},cy0 is a family of independent identically distributed random
variables whose common probability distribution u has a bounded
density p and satisfies {0, M} C suppu C [0, M.] for some M. > 0;

@ the single site potential v is a measurable function on R? with

U7XI\3_(O) <u< XA5+(O)7 where U,,Si € (0700)3 /\5(0) = (723 g)d
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Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrédinger operator

((on) = H{ +U on Lz(R"d), where H(():Ta)) =AM V(,(Jn).

10,0

@ A is the nd-dimensional Laplacian operator.

Q V(") is the random potential given by (x = (xl, ., Xn) € R™)
Z V xi), with V Z oy u(x — k),
=1,...,n kezd

0 0= {wk}kEZd is a family of independent identically distributed random
variables whose common probability distribution u has a bounded
density p and satisfies {0, M} C suppu C [0, M.] for some M. > 0;
@ the single site potential v is a measurable function on R? with
U7XI\5_(O) <u< XA5+(O)7 where U,,Si € (0’00)’ /\5(0) = (723 g)d
© U is a short range interaction potential between the n particles:

Ux)= Y. Uli—x).

1<i<j<n
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Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrédinger operator

((on) = H{ +U on Lz(R"d), where H(():Ta)) =AM V(,(Jn).

10,0

@ A is the nd-dimensional Laplacian operator.

Q V(") is the random potential given by (x = (xl, ., Xn) € R™)
Z V xi), with V Z oy u(x — k),
=1,...,n kezd

0 0= {wk}kEZd is a family of independent identically distributed random
variables whose common probability distribution u has a bounded
density p and satisfies {0, M} C suppu C [0, M.] for some M. > 0;
@ the single site potential v is a measurable function on R? with
U7XI\5_(O) <u< XA5+(O)7 where U,,Si € (0’00)’ /\5(0) = (723 g)d
© U is a short range interaction potential between the n particles:

Ux)= Y. Uli—x).

1<i<j<n

0< U(y) < U <o, Uly) = U(—y), U(y) =0 for |ly|l. > ro € (0,%).
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Notation

@ Given x = (x1,...,xq) € RY, we set ||x|| = ||x]|.. := max{|xt]|,...,|xq]}.

[m]

=
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Notation

@ Given x = (x1,...,xq) € RY, we set ||x|| = ||x]|.. := max{|xt]|,...,|xq]}.
Q Ifa=(a1,...,a,) € R", we set ||a]| := max{||a1],. .., ||an]|}.

[m]

=
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Optimal Wegner estimates — multi-particles

Notation
@ Given x = (x1,...,xq) € RY, we set ||x|| = ||x]|.. := max{|xt]|,...,|xq]}.
Q Ifa=(a1,...,a,) €R™ we set ||a := max{||ai]|,...,| anl|}.

© The one-particle box centered at x € RY with side of length L >0 is
A(x)={y eRY [y —x|| < 5£}. We set A=ANZ“.
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Optimal Wegner estimates — multi-particles

Notation
@ Given x = (x1,...,xq) € RY, we set ||x|| = ||x]|.. := max{|xt]|,...,|xq]}.
Q Ifa=(a1,...,a,) €R™ we set ||a := max{||ai]|,...,| anl|}.
© The one-particle box centered at x € R? with side of length L >0 is

A(x)={y eR% [ly —x|| < 5}. We set A=ANZ.
@ The n-particle box centered at x € R"? with side length L > 0 is

AP () = {y e R ly —x < § } = [T A0
i=1

note that /\(Ll)(x) = Az(x). By a box A in R"¥ we mean an n-particle
box I\(L")(x) for some x € R™,
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Optimal Wegner estimates — multi-particles

Notation
@ Given x = (x1,...,xq) € RY, we set ||x|| = ||x]|.. := max{|xt]|,...,|xq]}.
Q Ifa=(a1,...,a,) €R™ we set ||a := max{||ai]|,...,| anl|}.
© The one-particle box centered at x € R? with side of length L >0 is

A(x)={y eR% [ly —x|| < 5}. We set A=ANZ.
The n-particle box centered at x € R"? with side length L > 0 is

AP () = {y e R ly —x < § } = [T A0
i=1

note that I\(Ll)(x) = Az(x). By a box A in R"¥ we mean an n-particle
box I\(L")(x) for some x € R™,
Given a one-particle box A, we will use E5 and Py to denote the

expectation and probability with respect to the probability distribution
of the random variables {@x}, 7.
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Finite volume multi-particle Anderson Hamiltonians

Given an n-particle box A = /\(L")(a), we define the corresponding finite

volume Anderson Hamiltonian HC(O"B\ on L?(A) by

Hco’?)\ = (()’na)”\ + Up, with Hé?a)),l\ — _AS\") + V(”)

N\’
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Optimal Wegner estimates — multi-particles

Finite volume multi-particle Anderson Hamiltonians

Given an n-particle box A = /\(" (a), we define the corresponding finite
volume Anderson Hamiltonian H( ) on L?(A) by

ik = Mt U with H =60V
(n)

where A,"” is the Laplacian on A with Dirichlet boundary condition, Uy is
the restriction of U to A,
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Optimal Wegner estimates — multi-particles

Finite volume multi-particle Anderson Hamiltonians

Given an n-particle box A = /\(L")(a), we define the corresponding finite
volume Anderson Hamiltonian H((O"B\ on L?(A) by
HN = HS A+ Un, with H) o= a8 v,

where AS\") is the Laplacian on A with Dirichlet boundary condition, Uy is
the restriction of U to A, and

(1)
ZVwALa)X’ for xeAN,

where V! ,)\ is defined for a one-particle box A C RY by

V(f)ll)\(x) = Z;a)k u(x—k) for xeA.
ke
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Optimal Wegner estimates — multi-particles

Finite volume multi-particle Anderson Hamiltonians

Given an n-particle box A = /\(" (a), we define the corresponding finite
volume Anderson Hamiltonian H( 3\ on L?(A) by

ik = Mt U with H =60V
(n)

where Ap
the restriction of U to A, and

n 1
V(g/)\( )= ; V(f) /)\L(a )(X,') for xeAN,
where V! ,)\ is defined for a one-particle box A C RY by
V(l) Z o, u(x—k) for xeA.
kel

We set
RONz) = (HSA—2)t for z¢ o (HIA).

Abel Klein Unique continuation principle for spectral projections

is the Laplacian on A with Dirichlet boundary condition, Uy is



Optimal Wegner estimates — multi-particles

Wegner estimate for multi-particle Anderson Hamiltonians

Theorem

Let n€ N and E > 0. There exist constants Y, g, >0and C, g, , such
that, for all n-particle boxes N = I\(L")(a) with a = (ai,...,a,) € R" and
L >114+/nd and all intervals | C [0, E,) with |I| <2y, g,, we have

gLy ey

Enay {020 (HUA)} < G oIl for =12,

In particular, for any E < E,, 0<€&<7Y,g ,andi=1,2,...,n, we have

PAL(a;){d(G(HC(O"}\), E) < 8} <2GCe. |lpll.. €L™.
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Optimal Wegner estimates — multi-particles

Wegner estimate for multi-particle Anderson Hamiltonians

Theorem

Let n€ N and E > 0. There exist constants Y, g, >0and C, g, , such
that, for all n-particle boxes N = I\(L")(a) with a = (ai,...,a,) € R" and
L >114+/nd and all intervals | C [0, E,) with |I| <2y, g,, we have

Enay {020 (HUA)} < G oIl for =12,
In particular, for any E < E,, 0<€&<7Y,g ,andi=1,2,...,n, we have

Pa oy {d(o(HIN). E) <&} <2Cor. o]l L™

Hislop and Klopp: similar Wegner estimate taking expectation over all
random variables.
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Optimal Wegner estimates — multi-particles

Proof of multi-particle Wegner estimate

Let A=A"(a), A; = A(a)).

Vi (x) = Z VR (x;) Z Y owu(i—k) =Y o6 (x)
i=1 i=1kep; kezd
G,EA)(X) = Z u(xi—k)>u_ Z YN
{iikeAi} {ikeAi} ’
Fix g € {1,2,...,n}, we have

HO =8 +un+ Y oo™+ Y oo,

)

keZd\/\Aq kg/\Aq
Then for x € A we have (with n = min{%,% )
W(A)(x) = Z XB(n)(km)(X) < U:l Z QISA)(X)
keAnznd ke/\:
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Proof of multi-particle Wegner estimate-cont.

Fix E; > 0. It follows from the UCPSP Theorem that for any interval
I [0, Ey) with |I| < 2%, g, we have

1(HIN < 722 2 (HIN WO, (HO)

1 n A n
<u 2 0(HOY | X o™ ) xi(H),
keh,

2 ~
where 75,E+=%71M"d<l+m) with K = n(n—1)||U|w+2M, 89+ E,.

The Wegner estimate can now be proved following as in one-particle case,

averaging only the random variables {®;}, 5.
q
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Wegner estimates at high disorder

Let Hy ) = Ho+ AV, be a crooked Anderson Hamiltonian, where A >0 is
the disorder parameter.
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Wegner estimates at high disorder

Let Hy ) = Ho+ AV, be a crooked Anderson Hamiltonian, where A >0 is
the disorder parameter.
We can make explicit the dependence on A in the Wegner estimate:

2
E {trPo s a(1)} < Care™ (42 ) sy 1) A
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Wegner estimates at high disorder

Let Hy ) = Ho+ AV, be a crooked Anderson Hamiltonian, where A >0 is

the disorder parameter.
We can make explicit the dependence on A in the Wegner estimate:
2
B {trPu i)} < Cae® s\ 1.
If we use the UCPSP for Hy, as in Combes, Hislop and Klopp, we get

logd

E{trPyan(l)} < Cg, <1 +;L22+'°g2> SAATEHIN A
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Wegner estimates at high disorder
Let Hy ) = Ho+ AV, be a crooked Anderson Hamiltonian, where A >0 is

the disorder parameter.
We can make explicit the dependence on A in the Wegner estimate:

2
B {trPu i)} < Cae® s\ 1.
If we use the UCPSP for Hy, as in Combes, Hislop and Klopp, we get

logd

E{trPyan(l)} < Cg, <1 122 +'°g2) SAATEHIN A

These Wegner estimates get worse as the disorder increases.
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Wegner estimates at high disorder

Let Hy ) = Ho+ AV, be a crooked Anderson Hamiltonian, where A >0 is
the disorder parameter.
We can make explicit the dependence on A in the Wegner estimate:

2
E {trPo s a(1)} < Care™ (42 ) sy 1) A

If we use the UCPSP for Hy, as in Combes, Hislop and Klopp, we get

logd

E{trPyan(l)} < Cg, <1 122 +'°g2) SAATEHIN A

These Wegner estimates get worse as the disorder increases.

But if we have the covering condition U™ > ax for some o > 0, we get,
following Combes-Hislop or the Lemma,

E{trPyin()} < Cys, ajvoy..e SAAHIDIAL
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Wegner estimates at high disorder

Let Hy ) = Ho+ AV, be a crooked Anderson Hamiltonian, where A >0 is
the disorder parameter.
We can make explicit the dependence on A in the Wegner estimate:

2
E {trPo s a(1)} < Care™ (42 ) sy 1) A

If we use the UCPSP for Hy, as in Combes, Hislop and Klopp, we get

logd

E{trPyan(l)} < Cg, <1 122 +'°g2) SAATEHIN A

These Wegner estimates get worse as the disorder increases.

But if we have the covering condition U™ > ax for some o > 0, we get,
following Combes-Hislop or the Lemma,

E{trPosn()} < Cys, ajvor..e SAA T I)IAL

a Wegner estimate that gets better as the disorder increases.
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Wegner estimates at high disorder

Optimal Wegner estimate at the bottom of the spectrum
at high disorder

Theorem

Let H, ) be a crooked Anderson Hamiltonian with disorder A > 0.

Abel Klein Unique continuation principle for spectral projections




Wegner estimates at high disorder

Optimal Wegner estimate at the bottom of the spectrum
at high disorder

Theorem
Let H, ) be a crooked Anderson Hamiltonian with disorder A > 0. Then

E(co) := lim E(t) =supE(t) >0, where E(t):=info(Ho+ tu_W).

t—roo t>0
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Wegner estimates at high disorder

Optimal Wegner estimate at the bottom of the spectrum
at high disorder

Theorem

Let H, ) be a crooked Anderson Hamiltonian with disorder A > 0. Then

E(co) := lim E(t) =supE(t) >0, where E(t):=info(Ho+ tu_W).

t—roo t>0

Moreover, for each E; €]0, E(e0)[ there exists k = k(E1) > 0, independent
of A, such that the following holds for all A > 0:
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Wegner estimates at high disorder

Optimal Wegner estimate at the bottom of the spectrum
at high disorder

Theorem

Let H, ) be a crooked Anderson Hamiltonian with disorder A > 0. Then

E(co) := lim E(t) =supE(t) >0, where E(t):=info(Ho+ tu_W).

t—roo t>0

Moreover, for each E; €]0, E(e0)[ there exists kK = k(E1) > 0, independent
of A, such that the following holds for all A > 0: Given a box A = \;(xp)
with xo € RY and L > 2+ 8,, we have

D D D
PO (=0, E) UM PD) (1 =0, E1]) > 6 PLD) (1 0, 1)),
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Wegner estimates at high disorder

Optimal Wegner estimate at the bottom of the spectrum
at high disorder

Theorem

Let H, ) be a crooked Anderson Hamiltonian with disorder A > 0. Then

E(c0) := lim E(t) =supE(t) >0

t—roo t>0

,  where E(t):=info(Ho+ tu_W).

Moreover, for each E; €]0, E(e0)[ there exists kK = k(E1) > 0, independent
of A, such that the following holds for all A > 0: Given a box A = \;(xp)
with xo € RY and L > 2+ 8,, we have

D D
PO (=0, E) UM PD) (1 =0, E1]) > 6 PLD) (1 0, 1)),

and, for any interval | C]— oo, E],

+ logd

_ 2 log2 _
E{trPS (N} < Cyp v ( 20+ E))° 7 S\ATHIIAL
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A lower bound on E (o)
Lemma
Let Hy, u_, W be as in a crooked Anderson Hamiltonian, set

H(t) = Ho+ tu_W for t >0, and let E(t) = inf 6(H(t)),
E(e0) =limso E(t) = SUP¢>o E(t).

o =
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A lower bound on E (o)

Lemma

Let Hy, u_, W be as in a crooked Anderson Hamiltonian, set
H(t) = Ho+tu_W for t >0, and let E(t) =inf o (H(t)),
E(°°) = |imt%°o E(t) = Suptzo E(t) Then

My <1+ (2 vé.°)+2tu,) §>

E(t)>tu_6_ for all t>0,
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A lower bound on E (o)

Lemma

Let Hy, u_, W be as in a crooked Anderson Hamiltonian, set
H(t) = Ho+tu_W for t >0, and let E(t) = inf o(H(t)),
E(o0) = lim¢_,o E(t) = sup;>q E(t). Then

My (1+ (2 v£°)+2tu,) §>

E(t)>tu_d_ for all t>0,

so we conclude that

2
Md<1+(2v..£°)+2r)3>
E(e0) > sup td_

te[0,00]

> 0.
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A lower bound on E (o)

Lemma

Let Hy, u_, W be as in a crooked Anderson Hamiltonian, set
H(t) = Ho+tu_W for t >0, and let E(t) = inf o(H(t)),
E(o0) = lim¢_,o E(t) = sup;>q E(t). Then

My (1+(2 v°£°)+2tu,)%

E(t)>tu_6_ ) forall t>0,

so we conclude that

2
Md<1+(2v..£°’+2r)3>
E(e0) > sup td_

te[0,00]

> 0.

This lemma is proven from the Corollary to the QUCP,
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An abstract UCSP

The Theorem now follows using an extension of an abstract UCPSP due
to Boutet de Monvel, Lenz, and Stollmann (2011).
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Wegner estimates at high disorder

An abstract UCSP

The Theorem now follows using an extension of an abstract UCPSP due
to Boutet de Monvel, Lenz, and Stollmann (2011).

Lemma

Let Hy be a self-adjoint operator on a Hilbert space ¢, bounded from
below, and let Y > 0 be a bounded operator on ¢ .
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Wegner estimates at high disorder

An abstract UCSP

The Theorem now follows using an extension of an abstract UCPSP due
to Boutet de Monvel, Lenz, and Stollmann (2011).

Lemma
Let Hy be a self-adjoint operator on a Hilbert space ¢, bounded from

below, and let Y > 0 be a bounded operator on ¢ .
Let H(t) = Hy+tY for t >0, and set E(t) =info(H(t)).
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An abstract UCSP

The Theorem now follows using an extension of an abstract UCPSP due
to Boutet de Monvel, Lenz, and Stollmann (2011).

Lemma

Let Hy be a self-adjoint operator on a Hilbert space ¢, bounded from
below, and let Y > 0 be a bounded operator on ¢ .

Let H(t) = Hy+tY for t >0, and set E(t) =info(H(t)).
Let E(o0) = lim¢ ;o E(t) = sup;>q E(t).
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An abstract UCSP

The Theorem now follows using an extension of an abstract UCPSP due
to Boutet de Monvel, Lenz, and Stollmann (2011).

Lemma

Let Hy be a self-adjoint operator on a Hilbert space ¢, bounded from
below, and let Y > 0 be a bounded operator on ¢ .
Let H(t) = Hy+tY for t >0, and set E(t) =info(H(t)).
Let E(o0) = lim¢ ;o E(t) = sup;>q E(t).
Suppose E(e0) > E(0). Given E; €]E(0), E(c0)], let
E(S) — E1

K= K‘(H(),Y,El): sup ———>0.
s>0; E(s)>E; S
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Wegner estimates at high disorder

An abstract UCSP

The Theorem now follows using an extension of an abstract UCPSP due
to Boutet de Monvel, Lenz, and Stollmann (2011).

Lemma

Let Hy be a self-adjoint operator on a Hilbert space ¢, bounded from
below, and let Y > 0 be a bounded operator on ¢ .
Let H(t) = Hy+tY for t >0, and set E(t) =info(H(t)).
Let E(o0) = lim¢ ;o E(t) = sup;>q E(t).
Suppose E(e0) > E(0). Given E; €]E(0), E(c0)], let
E(S) — E1

K= K‘(Ho,Y,El): sup ———>0.
s>0; E(s)>E; S

Then for all bounded operators V > 0 on ¢ and Borel sets B C| — oo, E1]
we have

Xe(Ho+ V)Y xg(Ho+V)>xxg(Ho+ V).
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Proof of the abstract UCPSP

Fix E1 €]E(0), E(e°)[. For all Borel sets B C] — oo, E1] we have, writing
Pv(B) = Xg(Ho+ V),

Pv(B)(Ho+ V)Py(B) < E1Py(B).
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Wegner estimates at high disorder

Proof of the abstract UCPSP

Fix E; €]E(0), E(e0)[. For all Borel sets B C| — 0, E;| we have, writing
Pv(B) = Xg(Ho+ V),

Pv(B)(Ho+ V)Pv(B) < E1Pv(B).
Since E; €]E(0), E(e)[, there is s > 0 such that E(s) > E;.
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Wegner estimates at high disorder

Proof of the abstract UCPSP

Fix E; €]E(0), E(e0)[. For all Borel sets B C| — 0, E;| we have, writing
Pv(B) = Xg(Ho+ V),

Py(B)(Ho+ V)Pyv(B) < E1 Py(B).
Since E; €]E(0), E(c0)[, there is s > 0 such that E(s) > E;. Then,

Pv(B)(H(s)+V —sY — E1)Py(B) = Pv(B)(Ho+ V — E1)Pv(B) <0,
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Wegner estimates at high disorder

Proof of the abstract UCPSP

Fix E; €]E(0), E(e0)[. For all Borel sets B C| — 0, E;| we have, writing
Pv(B) = Xg(Ho+ V),

Pv(B)(Ho+ V)Py(B) < E1Py(B).
Since E; €]E(0), E(c0)[, there is s > 0 such that E(s) > E;. Then,
PU(B)(H(s)+V — sY — E1)Py(B) = Py(B)(Ho+ V — E1)Py(B) <0,
and hence, using V >0,

sPy(B)YPy(B) > Py (B)(H(s)+ V — E1)Py(B)
> Py(B)(H(s) - E1)Py(B) > (E(s) -~ E1)Py(B).
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Wegner estimates at high disorder

Proof of the abstract UCPSP

Fix E; €]E(0), E(e0)[. For all Borel sets B C| — 0, E;| we have, writing
Pv(B) = Xg(Ho+ V),

Pv(B)(Ho+ V)Py(B) < E1Py(B).
Since E; €]E(0), E(c0)[, there is s > 0 such that E(s) > E;. Then,
PU(B)(H(s)+V — sY — E1)Py(B) = Py(B)(Ho+ V — E1)Py(B) <0,
and hence, using V >0,

sPv(B)YPy(B) > Pv(B)(H(s)+V — E1)Pv(B)
> Py(B)(H(s) — E1)Pv(B) > (E(s) — E1)Py(B).
We conclude that

xs(Ho+ V)Y x5(Ho+ V) > kxg(Ho+ V).
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Wegner estimates at high disorder

Localization in a fixed interval at high disorder
Theorem

Let H,, 5 be an ergodic Anderson Hamiltonian with disorder A >0, and

suppose the single-site probability distribution | has a bounded density (or
is uniformly Hélder continuous).

Abel Klein Unique continuation principle for spectral projections




Wegner estimates at high disorder

Localization in a fixed interval at high disorder

Theorem

Let H,, 5 be an ergodic Anderson Hamiltonian with disorder A >0, and
suppose the single-site probability distribution | has a bounded density (or
is uniformly Hélder continuous).

Then, given E; €]0, E(e0)[, there exists A(Ey) < oo, such that H,, ,
exhibits complete localization on the interval [0, E1[ for all A > A(E7).
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Localization in a fixed interval at high disorder

Theorem

Let H, ; be an ergodic Anderson Hamiltonian with disorder A >0, and
suppose the single-site probability distribution | has a bounded density (or
is uniformly Hélder continuous).

Then, given E; €]0, E(e0)[, there exists A(Ey) < oo, such that H,, ,
exhibits complete localization on the interval [0, E1[ for all A > A(E7).

By complete localization on an interval / we mean that for all E € [ there
exists 6(E) > 0 such that we can perform the bootstrap multiscale analysis

on the interval (E —8(E), E+ 6(E)), obtaining Anderson and dynamical
localization.
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Localization in a fixed interval at high disorder
Theorem

Let H, ; be an ergodic Anderson Hamiltonian with disorder A >0, and
suppose the single-site probability distribution | has a bounded density (or
is uniformly Holder continuous).

Then, given E; €]0, E(e0)[, there exists A(Ey) < oo, such that H,, ,
exhibits complete localization on the interval [0, E1[ for all A > A(E7).

By complete localization on an interval / we mean that for all E € [ there
exists 6(E) > 0 such that we can perform the bootstrap multiscale analysis
on the interval (E —8(E),E+ 8(E)), obtaining Anderson and dynamical
localization.

This theorem was previously known only with a covering condition
UM > gy, o> 0, in which case E(c0) = co.
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Localization in a fixed interval at high disorder

Theorem

Let H, ; be an ergodic Anderson Hamiltonian with disorder A >0, and
suppose the single-site probability distribution | has a bounded density (or
is uniformly Hélder continuous).

Then, given E; €]0, E(e0)[, there exists A(Ey) < oo, such that H,, ,
exhibits complete localization on the interval [0, E1[ for all A > A(Ey).

By complete localization on an interval / we mean that for all E € [ there
exists 6(E) > 0 such that we can perform the bootstrap multiscale analysis
on the interval (E —8(E),E+ 8(E)), obtaining Anderson and dynamical
localization.

This theorem was previously known only with a covering condition
UM > gy, o> 0, in which case E(o0) = oo.

This theorem holds for crooked Anderson Hamiltonians with appropriate
hypotheses on the single site probability distributions fi;.
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