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Unique continuation principle for spectral projections

Schrödinger operators

We consider a Schrödinger operator

H =−∆ +V on L2(Rd),

where ∆ is the Laplacian operator and V is a bounded potential.

We define balls and boxes:

B(x ,δ ) :=
{
y ∈ Rd ; |y −x |< δ

}
, with |x | := |x |2 =

(
d

∑
j=1

|xj |2
) 1

2

;

ΛL(x) :=
{
y ∈ Rd ; |y −x |

∞
< L

2

}
, with |x |

∞
:= max

j=1,2,...,d
|xj | .

HΛ denotes the restriction of H to the the box Λ⊂ Rd :

HΛ =−∆Λ +VΛ on L2(Λ).

∆Λ is the Laplacian on Λ with either Dirichlet or periodic boundary
condition.
VΛ is the restriction of V to Λ..
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Unique continuation principle for spectral projections

A UCPSP on a box Λ is an estimate of the form

χ I (HΛ)WΛ χ I (HΛ)≥ κ χ I (HΛ) on L2(Λ),

where χ I is the characteristic function of an interval I ⊂ R,
W ≥ 0 is a potential, and κ > 0 is a constant.

If W ≥ κ > 0 (covering condition) the UCPSP is trivial.

Combes, Hislop and Klopp (2003): The UCPSP holds for bounded
Zd -periodic potentials V and W , W ≥ 0 with W > 0 on an open set,
boxes Λ = ΛL(x0)⊂ Rd with L ∈ N, HΛ with periodic boundary
condition, with a constant κ > 0 depending on sup I (and d ,V ,W ),
but not on the box Λ. Their proof uses the unique continuation
principle and Floquet theory.

Germinet and Klein (2013) proved a modified version of the CHK
UCPSP, using Bourgain and Kenig’s quantitative unique continuation
principle and (some) Floquet theory, obtaining control of the constant
κ in terms of the relevant parameters.
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Unique continuation principle for spectral projections

Theorem (UCPSP)

There exists a constant Md > 0, depending only on d , such that:

Let H =−∆ +V be a Schrödinger operator on L2(Rd).
Given an energy E0 > 0 and δ ∈]0, 1

2 ], define γ = γ(d ,K ,δ ) > 0 by

γ
2 = 1

2 δ
Md

(
1+K

2
3

)
, where K = K (V ,E0) = 2‖V ‖

∞
+E0.

Then, given

{yk}k∈Zd ⊂ Rd with B(yk ,δ )⊂ Λ1(k) for all k ∈ Zd ,
a closed interval I ⊂]−∞,E0] with |I | ≤ 2γ,
a box Λ = ΛL(x0) with x0 ∈ Rd and L≥ 114

√
d ,

a potential
W (Λ) ≥ ∑

k∈Zd ,Λ1(k)⊂Λ

χB(yk ,δ),

we have
χ I (HΛ)W (Λ) χ I (HΛ)≥ γ

2χ I (HΛ) on L2(Λ).
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Unique continuation principle for spectral projections

Comments on the UCPSP

Rojas-Molina and Veselić (2013) proved, under the hypotheses of the
Theorem, that for boxes Λ = ΛL(x0) with x0 ∈ Zd and L ∈ Nodd, if ψ

is an eigenfunction of HΛ with eigenvalue E ∈]−∞,E0], then∥∥∥W (Λ)
ψ

∥∥∥2

2
≥ κE0

‖ψ‖2
2 with κE0 > 0.

This is just the UCPSP when I = {E}.Their proof uses the
quantitative unique continuation principle (Bourgain and Kenig).

Our Theorem is derived from the quantitative unique continuation
principle as in Bourgain and Klein using the “dominant boxes”
introduced by Rojas-Molina and Veselić.

The UCPSP is a crucial ingredient for proving Wegner estimates for
one and multi-particle Anderson Hamiltonians. The UCPSP replaces
the covering condition.
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Unique continuation principle for spectral projections

Quantitative unique cont. principle (Bourgain-Klein)

Let Ω⊂ Rd open. Let ψ ∈ H2(Ω) and let ζ ∈ L2(Ω) be defined by

−∆ψ +Vψ = ζ a.e. on Ω,

where V is a bounded real measurable function on Ω, ‖V ‖
∞
≤ K < ∞.

Let Θ⊂ Ω be a bounded measurable set where
∥∥ψχΘ

∥∥
2
> 0.

Set Q(x ,Θ) := sup
y∈Θ
|y −x | for x ∈ Ω.

Let x0 ∈ Ω\Θ satisfy Q = Q(x0,Θ)≥ 1 and B(x0,6Q + 2)⊂ Ω.

Then, given
0 < δ ≤min

{
dist(x0,Θ) , 1

2

}
,

we have(
δ

Q

)md

(
1+K

2
3

)(
Q

4
3 +log

‖ψχΩ‖2
‖ψχΘ‖2

)
‖ψχΘ‖2

2 ≤
∥∥ψχB(x0,δ)

∥∥2

2
+‖ζ χΩ‖2

2 ,

where md > 0 is a constant depending only on d .
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Corollary to the quantitative unique continuation principle

Corollary

There exists a constant Md > 0, depending only on d , such that:

Let H =−∆ +V be a Schrödinger operator on L2(Rd), where V is a
bounded potential with ‖V ‖

∞
≤ K .

Fix δ ∈]0, 1
2 ] and sites {yk}k∈Zd ⊂ Rd with B(yk ,δ )⊂ Λ1(k).

Consider a box Λ = ΛL(x0) with x0 ∈ Rd and L≥ 114
√
d .

Set W (Λ) = ∑k∈Zd ,Λ1(k)⊂Λ χB(yk ,δ).

Then for all real-valued ψ ∈D(HΛ) = D(∆Λ) we have (on L2(Λ))

δ
Md

(
1+K

2
3

)
‖ψ‖2

2 ≤ ∑
k∈Zd ,Λ1(k)⊂Λ

∥∥ψχB(yk ,δ)

∥∥2

2
+‖HΛψ‖2

2

=
∥∥∥W (Λ)

ψ

∥∥∥2

2
+‖HΛψ‖2

2 .
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Proof of the UCPSP

Let E0 > 0 and I = [E −β ,E + β ]⊂]−∞,E0] a closed interval.
Since HΛ ≥−‖V ‖∞

, we assume E ∈ [−‖V ‖
∞
,E0] without loss of

generality, so

‖V −E‖
∞
≤ ‖V ‖

∞
+ max{E0,‖V ‖∞

} ≤ K = 2‖V ‖
∞

+E0.

Moreover, for any box Λ we have

‖(HΛ−E )ψ‖2 ≤ β ‖ψ‖2 for ψ = χ I (HΛ)ψ.

Let Λ be a box as in the Corollary and ψ = χ I (HΛ)ψ real-valued.
It follows from the Corollary applied to H−E that

δ
Md

(
1+K

2
3

)
‖ψ‖2

2 ≤
∥∥∥W (Λ)

ψ

∥∥∥2

2
+‖(HΛ−E )ψ‖2

2 ≤
∥∥∥W (Λ)

ψ

∥∥∥2

2
+ β

2 ‖ψ‖2
2 .

If β 2 ≤ γ2 := 1
2 δ

Md

(
1+K

2
3

)
, i.e., |I | ≤ 2γ, we get

γ
2 ‖ψ‖2

2 ≤
∥∥∥W (Λ)

ψ

∥∥∥2

2
, i.e., γ

2χ I (HΛ)≤ χ I (HΛ)W (Λ)χ I (HΛ).
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Unique continuation principle for spectral projections

Proof of the Corollary from the QUCP

Take Λ = ΛL(0) with L ∈ Nodd. We extend functions ϕ on Λ to functions
V̂ and ϕ̃ on Rd and V to a potential V̂ on Rd so

˜(−∆ +V )ψ = (−∆ + V̂ )ψ̃.

Take Y ∈ Nodd, 9≤ Y < L
2 . Since L is odd, we have Λ =

⋃
k∈Λ∩Zd Λ1(k).

It follows that for all ϕ ∈ L2(Λ) we have

∑
k∈Λ∩Zd

∥∥ϕ̃ΛY (k)

∥∥2

2
≤ (2Y )d ‖ϕΛ‖2

2 .

We now fix ψ ∈D(∆Λ). Following Rojas-Molina and Veselić, we call a site
k ∈ Λ̂ dominating (for ψ) if∥∥ψΛ1(k)

∥∥2

2
≥ 1

2(2Y )d

∥∥ψ̃ΛY (k)

∥∥2

2
,

and note that, letting D̂ ⊂ Λ∩Zd denote the collection of dominating sites,

∑
k∈D̂

∥∥ψΛ1(k)

∥∥2

2
≥ 1

2 ‖ψΛ‖2
2 .
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Proof of the Corollary-continued

If k ∈ D̂ we apply the QUCP with Ω = ΛY (k) and Θ = Λ1(k), obtaining

δ
m′d

(
1+K

2
3

)∥∥ψΛ1(k)

∥∥2

2
≤
∥∥∥ψB(yJ(k),δ)

∥∥∥2

2
+
∥∥∥ζ̃ΛY (k)

∥∥∥2

2
,

where ζ = (−∆ +V )ψ, Y is appropriately chosen, Y ≤ 40
√
d < L

2 , and

the map J : D̂→ Λ∩Zd is defined appropriately so
J(k) ∈ ΛY (k) and #J−1({j})≤ 2 for all j .

Summing over k ∈ D̂ and using ∑k∈D̂
∥∥ψΛ1(k)

∥∥2

2
≥ 1

2 ‖ψΛ‖2
2, we get

1
2 δ

m′d

(
1+K

2
3

)
‖ψΛ‖2

2 ≤ 2 ∑
k∈Λ∩Zd

∥∥ψB(yk ,δ)

∥∥2

2
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Optimal Wegner estimates

Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrödinger operator

Hω := H0 +Vω on L2(Rd)

1 H0 =−∆ +V (0), with V (0) a bounded potential and inf σ(H0) = 0.
2 Vω is a crooked alloy-type random potential:

Vω (x) := ∑
j∈Zd

ωjuj(x), with uj(x) = vj(x−yj),

where, for some δ− ∈]0, 1
2 ] and u−,δ+,M ∈]0,∞[:

1 {yj}j∈Zd are sites in Rd with B(yj ,δ−)⊂ Λ1(j) for all j ∈ Zd ;

2 the single site potentials {vj}j∈Zd are measurable functions on Rd with

u−χB(0,δ−) ≤ vj ≤ χΛδ+
(0) for all j ∈ Zd ;

3 ω = {ωj}j∈Zd is a family of independent random variables whose
probability distributions {µj}j∈Zd are non-degenerate with

supp µj ⊂ [0,M] for all j ∈ Zd .

Remark: If V (0) is qZd -periodic with q ∈ N, and yj = j , vj = v0, µj = µ0

for all j ∈ Zd , then Hω is the ergodic (usual) Anderson Hamiltonian.
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Optimal Wegner estimates

Finite volume crooked Anderson Hamiltonians

We define finite volume crooked Anderson Hamiltonians on a box
Λ = ΛL(x0), x0 ∈ Rd and L> 0, with either Dirichlet or periodic boundary
condition, by

Hω,Λ = H0,Λ +V
(Λ)
ω on L2(Λ),

where

H0,Λ = (H0)Λ is the restriction of H0 to Λ with the specified boundary
condition,

V
(Λ)
ω (x) := ∑

j∈Λ∩Zd

ωjuj(x) for x ∈ Λ.

We also set

U(x) := ∑j∈Zduj(x) and U(Λ)(x) := ∑
j∈Λ∩Zd

uj(x),

W (x) := ∑
j∈Zd

χB(yj ,δ−)(x) and W (Λ)(x) := ∑
j∈Zd ,Λ1(j)⊂Λ

χB(yj ,δ).
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Optimal Wegner estimates

Remark and notation

Note that
0≤WΛ ≤ 1

u−
UΛ.

We will use the following notation:

Pω,Λ(B) := χB(Hω,Λ) for a Borel set B ⊂ Rd .

The concentration function of the probability measure µ is defined by

Sµ (t) := sup
a∈R

µ([a,a+ t]) for t ≥ 0.

SΛ(t) := max
j∈Λ∩Zd

Sµj (t).
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Optimal Wegner estimates

Optimal Wegner estimates

An optimal Wegner estimate for Anderson Hamiltonians is an estimate of
the form

E
{

trPω,Λ(I )
}
≤ C SΛ(|I |) |Λ| .

Combes, Hislop (1994) proved optimal Wegner estimates for ergodic
Anderson Hamiltonians with a covering condition.
Combes, Hislop, Klopp (2007) proved optimal Wegner estimates for
ergodic Anderson Hamiltonians with periodic boundary condition and
boxes Λ = ΛL(x0) with L a multiple of the period.
Their proof uses the UCSP for the (nonrandom) periodic operator H0.
Rojas-Molina and Veselić (2013) proved Wegner estimates for
Delone-Anderson models, optimal up to an additional factor:

E
{

trPω,Λ(I )
}
≤ C |log |I ||d SΛ(|I |) |Λ|.

They used their single energy UCSP for the (nonrandom) operator H0.
Wegner estimates for crooked Anderson Hamiltonians imply
corresponding Wegner estimates for Delone-Anderson models.

Abel Klein Unique continuation principle for spectral projections



Optimal Wegner estimates

Optimal Wegner estimates

An optimal Wegner estimate for Anderson Hamiltonians is an estimate of
the form

E
{

trPω,Λ(I )
}
≤ C SΛ(|I |) |Λ| .

Combes, Hislop (1994) proved optimal Wegner estimates for ergodic
Anderson Hamiltonians with a covering condition.

Combes, Hislop, Klopp (2007) proved optimal Wegner estimates for
ergodic Anderson Hamiltonians with periodic boundary condition and
boxes Λ = ΛL(x0) with L a multiple of the period.
Their proof uses the UCSP for the (nonrandom) periodic operator H0.
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Optimal Wegner estimates
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γ
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Optimal Wegner estimates

UCPSP =⇒ Optimal Wegner estimate

The theorem (optimal Wegner estimates) follows from the UCPSP
theorem and the following lemma.

Lemma

Let Hω be a crooked Anderson Hamiltonian.
Let I ⊂]−∞,E0] be a closed interval and Λ = ΛL(x0) a box centered at
x0 ∈ Rd with L≥ 2 + δ+.

Suppose there exists a constant κ > 0 such that

Pω,Λ(I )U(Λ)Pω,Λ(I )≥ κPω,Λ(I ) with probability one.

Then

E
{

trPω,Λ(I )
}
≤ Cd ,δ+,‖V (0)‖∞

(
κ
−2(1 +E0)

)2
1+ logd

log2

SΛ(|I |) |Λ| .
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Optimal Wegner estimates

Proof of Lemma

We fix Λ and I ⊂]−∞,E0], let P = Pω,Λ(I ) U = U(Λ). Then (Dirichlet bc)

trP ≤ κ
−1 trPUP = κ

−1 tr
√
UP
√
U ≤ κ

−2 tr
√
UPUP

√
U = κ

−2 trPUPU

= κ
−2 trPUPUP ≤ κ

−2(1 +E0)trPU(Hω,Λ + 1)−1UP

≤ κ
−2(1 +E0)trPU(H0,Λ + 1)−1UP

= κ
−2(1 +E0)trUPU(H0,Λ + 1)−1

= κ
−2(1 +E0) ∑

i ,j∈Λ∩Zd

tr
√
ujP
√
uiTij ,

where Tij =
√
ui (H0,Λ + 1)−1√uj for i , j ∈ Λ∩Zd .

We may now adapt an argument in in Combes, Hislop, Klopp obtaining

E trP ≤ C
d ,δ+,V

(0)
∞

(
κ
−2(1 +E0)

)2
1+ logd

log2

SΛ(|I |) |Λ| .
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Optimal Wegner estimates – multi-particles

Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrödinger operator

H
(n)
ω := H

(n)
0,ω +U on L2(Rnd), where H

(n)
0,ω :=−∆(n) +V

(n)
ω .

1 ∆(n) is the nd-dimensional Laplacian operator.
2 V

(n)
ω is the random potential given by (x = (x1, ...,xn) ∈ Rnd)

V
(n)
ω (x) = ∑

i=1,...,n

V
(1)
ω (xi ), with V

(1)
ω (x) = ∑

k∈Zd

ωk u(x−k),

1 ω = {ωk}k∈Zd is a family of independent identically distributed random
variables whose common probability distribution µ has a bounded
density ρ and satisfies {0,M+} ⊂ supp µ ⊆ [0,M+] for some M+ > 0;

2 the single site potential u is a measurable function on Rd with

u−χΛδ− (0) ≤ u ≤ χΛδ+
(0), where u−,δ± ∈ (0,∞), Λδ (0) = (− δ

2 ,
δ

2 )d .

3 U is a short range interaction potential between the n particles:

U(x) = ∑
1≤i<j≤n

Ũ(xi −xj),

0≤ Ũ(y)≤ Ũ∞ < ∞, Ũ(y) = Ũ(−y), Ũ(y) = 0 for ‖y‖
∞
> r0 ∈ (0,∞).
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Optimal Wegner estimates – multi-particles

Notation

1 Given x = (x1, . . . ,xd) ∈Rd , we set ‖x‖= ‖x‖
∞

:= max{|x1| , . . . , |xd |}.

2 If a = (a1, . . . ,an) ∈ Rnd , we set ‖a‖ := max{‖a1‖ , . . . ,‖an‖}.
3 The one-particle box centered at x ∈ Rd with side of length L> 0 is

ΛL(x) =
{
y ∈ Rd ; ‖y −x‖< L

2

}
. We set Λ̂ = Λ∩Zd .

4 The n-particle box centered at x ∈ Rnd with side length L> 0 is

Λ
(n)
L (x) =

{
y ∈ Rnd ;‖y−x‖< L

2

}
=

n

∏
i=1

ΛL(xi );

note that Λ
(1)
L (x) = ΛL(x). By a box ΛL in Rnd we mean an n-particle

box Λ
(n)
L (x) for some x ∈ Rnd .

5 Given a one-particle box Λ, we will use EΛ and PΛ to denote the
expectation and probability with respect to the probability distribution
of the random variables {ωk}k∈Λ̂

.
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Optimal Wegner estimates – multi-particles

Finite volume multi-particle Anderson Hamiltonians

Given an n-particle box Λ = Λ
(n)
L (a), we define the corresponding finite

volume Anderson Hamiltonian H
(n)
ω,Λ on L2(Λ) by

H
(n)
ω,Λ := H

(n)
0,ω,Λ +UΛ, with H

(n)
0,ω,Λ :=−∆

(n)
Λ +V

(n)
ω,Λ,

where ∆
(n)
Λ is the Laplacian on Λ with Dirichlet boundary condition, UΛ is

the restriction of U to Λ, and

V
(n)
ω,Λ(x) =

n

∑
i=1

V
(1)
ω,ΛL(ai )

(xi ) for x ∈ Λ,

where V
(1)
ω,Λ is defined for a one-particle box Λ⊆ Rd by

V
(1)
ω,Λ(x) = ∑

k∈Λ̂

ωk u(x−k) for x ∈ Λ.

We set
R

(n)
ω,Λ(z) = (H

(n)
ω,Λ− z)−1 for z /∈ σ

(
H

(n)
ω,Λ

)
.
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Optimal Wegner estimates – multi-particles

Wegner estimate for multi-particle Anderson Hamiltonians

Theorem

Let n ∈ N and E+ > 0. There exist constants γn,E+ > 0 and Cn,E+ , such

that, for all n-particle boxes Λ = Λ
(n)
L (a) with a = (a1, . . . ,an) ∈ Rnd and

L≥ 114
√
nd and all intervals I ⊆ [0,E+) with |I | ≤ 2γn,E+ , we have

EΛL(ai )

{
tr χ I

(
H

(n)
ω,Λ

)}
≤ Cn,E+ ‖ρ‖∞

|I |Lnd for i = 1,2, . . . ,n.

In particular, for any E ≤ E+, 0 < ε ≤ γn,E+ , and i = 1,2, . . . ,n, we have

PΛL(ai )

{
d (σ(H

(n)
ω,Λ),E )≤ ε

}
≤ 2Cn,E+

‖ρ‖
∞

εLnd.

Hislop and Klopp: similar Wegner estimate taking expectation over all
random variables.
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Optimal Wegner estimates – multi-particles

Proof of multi-particle Wegner estimate

Let Λ = Λ
(n)
L (a), Λi = ΛL(ai ).

V
(n)
ω,Λ(x) =

n

∑
i=1

V
(1)
ω,Λi

(xi ) =
n

∑
i=1

∑
k∈Λ̂i

ωku(xi −k) = ∑
k∈Zd

ωkθ
(Λ)
k (x),

θ
(Λ)
k (x) = ∑

{i ;k∈Λ̂i}
u(xi −k)≥ u− ∑

{i ;k∈Λ̂i}
χ

Λ
(1)
δ−

(k)
(xi ).

Fix q ∈ {1,2, . . . ,n}, we have

H
(n)
ω,Λ =−∆

(n)
Λ +UΛ + ∑

k∈Zd\Λ̂q

ωkθ
(Λ)
k + ∑

k∈Λ̂q

ωkθ
(Λ)
k .

Then for x ∈ Λ we have (with η = min{ δ−
2 , 1

2})

W (Λ)(x) := ∑
k∈Λ∩Znd

χ
B(n)(k,η)(x)≤ u−1

− ∑
k∈Λ̂q

θ
(Λ)
k (x)
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Optimal Wegner estimates – multi-particles

Proof of multi-particle Wegner estimate-cont.

Fix E+ > 0. It follows from the UCPSP Theorem that for any interval
I ⊆ [0,E+) with |I | ≤ 2γn,E+ we have

χ I (H
(n)
ω,Λ)≤ γ

−2
n,E+

χ I (H
(n)
ω,Λ)W (Λ)χ I (H

(n)
ω,Λ)

≤ u−1
− γ

−2
n,E+

χ I (H
(n)
ω,Λ)

 ∑
k∈Λ̂q

θ
(Λ)
k

χ I (H
(n)
ω,Λ),

where γ
2
n,E+

= 1
2 η

Mnd

(
1+K

2
3

)
with K = n(n−1)‖Ũ‖∞ + 2M+δ

d
+ +E+.

The Wegner estimate can now be proved following as in one-particle case,
averaging only the random variables {ωi}i∈Λ̂q

.
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Wegner estimates at high disorder

Wegner estimates at high disorder

Let Hω,λ = H0 + λVω be a crooked Anderson Hamiltonian, where λ > 0 is
the disorder parameter.

We can make explicit the dependence on λ in the Wegner estimate:

E
{

trPω,λ ,Λ(I )
}
≤ CE0ecE0

(
1+λ

2
3

)
SΛ(λ

−1 |I |) |Λ| .

If we use the UCPSP for H0, as in Combes, Hislop and Klopp, we get

E
{

trPω,λ ,Λ(I )
}
≤ CE0

(
1 + λ

2
2+ logd

log2

)
SΛ(λ

−1 |I |) |Λ| .

These Wegner estimates get worse as the disorder increases.

But if we have the covering condition U(Λ) ≥ αχΛ for some α > 0, we get,
following Combes-Hislop or the Lemma,

E
{

trPω,λ ,Λ(I )
}
≤ Cd ,δ+,α,‖V (0)‖∞,E0

SΛ(λ
−1 |I |) |Λ| ,

a Wegner estimate that gets better as the disorder increases.
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Optimal Wegner estimate at the bottom of the spectrum
at high disorder

Theorem

Let Hω,λ be a crooked Anderson Hamiltonian with disorder λ > 0.

Then

E (∞) := lim
t→∞

E (t) = sup
t≥0

E (t) > 0, where E (t) := inf σ(H0 + tu−W ).

Moreover, for each E1 ∈]0,E (∞)[ there exists κ = κ(E1) > 0, independent
of λ , such that the following holds for all λ > 0: Given a box Λ = ΛL(x0)
with x0 ∈ Rd and L≥ 2 + δ+, we have

P
(D)
ω,λ ,Λ(]−∞,E1])U(Λ)P

(D)
ω,λ ,Λ(]−∞,E1])≥ κ P

(D)
ω,λ ,Λ(]−∞,E1]),

and, for any interval I ⊂]−∞,E1],

E
{

trP
(D)
ω,λ ,Λ(I )

}
≤ C

d ,δ+,V
(0)
∞

(
κ
−2(1 +E1)

)2
1+ logd

log2

SΛ(λ
−1 |I |) |Λ| .
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P
(D)
ω,λ ,Λ(]−∞,E1])U(Λ)P

(D)
ω,λ ,Λ(]−∞,E1])≥ κ P

(D)
ω,λ ,Λ(]−∞,E1]),

and, for any interval I ⊂]−∞,E1],

E
{

trP
(D)
ω,λ ,Λ(I )

}
≤ C

d ,δ+,V
(0)
∞

(
κ
−2(1 +E1)

)2
1+ logd

log2

SΛ(λ
−1 |I |) |Λ| .
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A lower bound on E (∞)

Lemma

Let H0, u−, W be as in a crooked Anderson Hamiltonian, set
H(t) = H0 + tu−W for t ≥ 0, and let E (t) = inf σ(H(t)),
E (∞) = limt→∞E (t) = supt≥0E (t).

Then

E (t)≥ tu−δ

Md

(
1+
(

2V
(0)
∞ +2tu−

) 2
3

)
− for all t ≥ 0,

so we conclude that

E (∞)≥ sup
t∈[0,∞[

tδ
Md

(
1+
(

2V
(0)
∞ +2t

) 2
3

)
− > 0.

This lemma is proven from the Corollary to the QUCP.
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An abstract UCSP

The Theorem now follows using an extension of an abstract UCPSP due
to Boutet de Monvel, Lenz, and Stollmann (2011).

Lemma

Let H0 be a self-adjoint operator on a Hilbert space H , bounded from
below, and let Y ≥ 0 be a bounded operator on H .
Let H(t) = H0 + tY for t ≥ 0, and set E (t) = inf σ(H(t)).
Let E (∞) = limt→∞E (t) = supt≥0E (t).
Suppose E (∞) > E (0). Given E1 ∈]E (0),E (∞)[, let

κ = κ(H0,Y ,E1) = sup
s>0; E(s)>E1

E (s)−E1

s
> 0.

Then for all bounded operators V ≥ 0 on H and Borel sets B ⊂]−∞,E1]
we have

χB(H0 +V )Y χB(H0 +V )≥ κχB(H0 +V ).
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Proof of the abstract UCPSP

Fix E1 ∈]E (0),E (∞)[. For all Borel sets B ⊂]−∞,E1] we have, writing
PV (B) = χB(H0 +V ),

PV (B)(H0 +V )PV (B)≤ E1PV (B).

Since E1 ∈]E (0),E (∞)[, there is s > 0 such that E (s) > E1. Then,

PV (B)(H(s) +V − sY −E1)PV (B) = PV (B)(H0 +V −E1)PV (B)≤ 0,

and hence, using V ≥ 0,

sPV (B)YPV (B)≥ PV (B)(H(s) +V −E1)PV (B)

≥ PV (B)(H(s)−E1)PV (B)≥ (E (s)−E1)PV (B).

We conclude that

χB(H0 +V )Y χB(H0 +V )≥ κχB(H0 +V ).
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Localization in a fixed interval at high disorder

Theorem

Let Hω,λ be an ergodic Anderson Hamiltonian with disorder λ > 0, and
suppose the single-site probability distribution µ has a bounded density (or
is uniformly Hölder continuous).

Then, given E1 ∈]0,E (∞)[, there exists λ (E1) < ∞ , such that Hω,λ

exhibits complete localization on the interval [0,E1[ for all λ ≥ λ (E1).

By complete localization on an interval I we mean that for all E ∈ I there
exists δ (E ) > 0 such that we can perform the bootstrap multiscale analysis
on the interval (E −δ (E ),E + δ (E )), obtaining Anderson and dynamical
localization.

This theorem was previously known only with a covering condition
U(Λ) ≥ αχΛ, α > 0, in which case E (∞) = ∞.

This theorem holds for crooked Anderson Hamiltonians with appropriate
hypotheses on the single site probability distributions µj .
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