# Full counting statistics of return to equilibrium

### Annalisa Panati, CPT, Université de Toulon and McGill

joint work with V. Jakšić, J. Panangaden, C-A. Pillet

(D) (A) (A)

Plan 1st law- physical picture

1st law general- mathematical setting Full counting statistics Result

## 1 1st law- physical picture

2 1st law general- mathematical setting

3 Full counting statistics



・ロト ・ 同ト ・ ヨト ・ ヨト

## Physical picture

Annalisa Panati, CPT, Université de Toulon and McGill [3m Full counting statistics of return to equilibrium

イロト イヨト イヨト イヨト

æ

# Physical picture

We consider the context of return to equilibrium

イロト イヨト イヨト イヨト

æ

# Physical picture

We consider the context of return to equilibrium 0th law of thermodynamics:

an isolated systems out of equilibrium reaches "rapidly enough" an equilibrium state (characterized by macroscopic parameters)

# Physical picture

We consider the context of return to equilibrium

Oth law of thermodynamics:

two interacting isolated systems out of equilibrium reach "rapidly enough" an equilibrium state (characterized by macroscopic parameters)

# Physical picture

We consider the context of return to equilibrium

Oth law of thermodynamics:

two interacting isolated systems out of equilibrium reach "rapidly enough" an equilibrium state (characterized by macroscopic parameters)

1st law - conservation of energy:

$$riangle Q_1 = riangle Q_2$$

Slightly diffrent situation: system 1 = small system Ssystem 2 = reservoir  $\mathcal{R}$ Statistical mechanics: derive macroscopic law from (quantum) microscopic law

## Mathematical setting

small system S $\mathcal{H}_{\mathcal{S}}$  Hilbert space  $dim\mathcal{H}_{\mathcal{S}} < \infty$  $H:\mathcal{H}_{\mathcal{S}}\to\mathcal{H}_{\mathcal{S}}$  $\mathcal{O}_{\mathcal{S}} = \mathcal{B}(\mathcal{H}_{\mathcal{S}})$  $\omega_{\mathcal{S}}: \mathcal{O}_{\mathcal{S}} \to \mathbb{C} \quad \omega_{\mathcal{S}}(\mathcal{A}) = \operatorname{tr}(\rho_{\mathcal{S}}\mathcal{A})$  $\tau_{\mathcal{S}}^t: \mathcal{O}_{\mathcal{S}} \to \mathcal{O}_{\mathcal{S}}$  $A \rightarrow \tau_t(A) = A_t := e^{itH_S}Ae^{-itH_S}$  $\tau_{\mathcal{S}}^{t}$  strongly continous in t with generator  $\delta_{\mathcal{S}} = i[H_{\mathcal{S}}, -]$  $(\mathcal{O}_{\mathcal{S}}, \tau_{\mathcal{S}}^t, \omega_{\mathcal{S}})$  is a dynamical system equilibrium state:  $\omega_{\beta}(A) := \frac{tr(\rho_{\beta}A)}{trop}$   $\rho_{\beta} := e^{-\beta H_{\beta}}$ 

(ロ) (同) (三) (三)

## Mathematical setting

#### reservoir ${\mathcal R}$

 $\mathcal{H}_{\mathcal{R}}$  Hilbert space,  $H: \mathcal{H}_{\mathcal{R}} \to \mathcal{H}_{\mathcal{R}}$ 

$$\begin{array}{ll} \mathcal{O}_{\mathcal{R}} \subset \mathcal{B}(\mathcal{H}_{\mathcal{R}}) \\ \omega_{\mathcal{R}} : \mathcal{O}_{\mathcal{R}} \to \mathbb{C} & \omega_{\mathcal{R}}(\mathcal{A}) = \operatorname{tr}(\rho_{\mathcal{R}}\mathcal{A}) \\ \tau^{t}_{\mathcal{R}} : & \mathcal{O}_{\mathcal{R}} \to & \mathcal{O}_{\mathcal{R}} \\ & \mathcal{A} \to & \tau_{t}(\mathcal{A}) = \mathcal{A}_{t} := e^{\operatorname{i} t \mathcal{H}_{\mathcal{R}}} \mathcal{A} e^{-\operatorname{i} t \mathcal{H}_{\mathcal{R}}} \\ \tau^{t}_{\mathcal{R}} \text{ strongly continous in } t \text{ with generator } \delta_{\mathcal{R}} = \operatorname{i}[\mathcal{H}_{\mathcal{R}}, -] \end{array}$$

イロン イヨン イヨン イヨン

æ

## Mathematical setting

#### reservoir $\mathcal{R}$

 $\begin{array}{l} (\mathcal{O}_{\mathcal{R}},\tau^t_{\mathcal{R}},\omega_{\mathcal{R}}) \\ \mathcal{O}_{\mathcal{R}} - \mathcal{C}^* - \text{ algebra} \\ \tau^t_{\mathcal{R}}:\mathcal{O}_{\mathcal{R}} \to \mathcal{O}_{\mathcal{R}} \text{ *- automorphism strongly continuous in } t \text{ with} \\ \text{generator } \delta_{\mathcal{R}}:D(\delta_{\mathcal{R}}) \subset \mathcal{O}_{\mathcal{R}} \to \mathcal{O}_{\mathcal{R}} \\ \omega_{\mathcal{R},\beta} \text{ equilibrium state: } (\tau^t_{\mathcal{R}},\beta) \text{ KMS State (hence faithful)} \\ ( \omega_{\mathcal{R},\beta}:=\frac{tr(\rho_{\beta}A)}{\mathrm{tr}\rho_{\beta}} \quad \rho_{\beta}:=e^{-\beta H_{\mathcal{R}}} \text{ when the above expression is well} \\ \text{defined} \end{array}$ 

э

## Mathematical setting

Full system free dynamics:  $(\mathcal{O}, \tau_0, \omega_0)$ with  $\mathcal{O} := \mathcal{O}_S \otimes \mathcal{O}_R$   $\tau_0 := \tau_S \otimes \tau_R$   $\omega_0 := \omega_S \otimes \omega_{R,\beta}$  $\omega_{\beta,0} := \omega_{S,\beta} \otimes \omega_{R,\beta}$ 

Full system interacting dynamics:  $(\mathcal{O}, \tau_{\lambda}, \omega_0)$  $\tau_{\lambda}$  with generator  $\delta = \delta_0 + i\lambda[V, -], V = V^*, V \in \mathcal{O}$ 

```
To simplify notation \omega_0 =: \omega
```

・ロト ・ 同ト ・ ヨト ・ ヨト

# Mathematical setting 1st law

$$\bigtriangleup Q_{\mathcal{S}}(\lambda, t) = \omega(\tau_{\lambda}^{t}(\mathcal{H}_{\mathcal{S}})) - \omega(\mathcal{H}_{\mathcal{S}}) = \int_{0}^{t} \omega(\tau_{\lambda}^{s}(\Phi_{\mathcal{S}})) \mathrm{d}s$$
where  $\Phi_{\mathcal{S}} = -\delta_{\mathcal{S}}(\lambda V)$ 

イロト イヨト イヨト イヨト

æ

# Mathematical setting 1st law

$$\bigtriangleup Q_{\mathcal{S}}(\lambda, t) = \omega(\tau_{\lambda}^{t}(H_{\mathcal{S}})) - \omega(H_{\mathcal{S}}) = \int_{0}^{t} \omega(\tau_{\lambda}^{s}(\Phi_{\mathcal{S}})) \mathrm{d}s$$
where  $\Phi_{\mathcal{S}} = -\delta_{\mathcal{S}}(\lambda V)$ 

$$riangle Q_{\mathcal{R}}(\lambda,t) = -\int_0^t \omega( au^s_\lambda(\Phi_{\mathcal{R}})) \mathrm{d}s$$

where  $\Phi_{\mathcal{R}} = -\delta_{\mathcal{R}}(\lambda V)$ 

イロト イヨト イヨト イヨト

æ

# Mathematical setting 1st law

$$\bigtriangleup Q_{\mathcal{S}}(\lambda, t) = \omega(\tau_{\lambda}^{t}(H_{\mathcal{S}})) - \omega(H_{\mathcal{S}}) = \int_{0}^{t} \omega(\tau_{\lambda}^{s}(\Phi_{\mathcal{S}})) \mathrm{d}s$$
where  $\Phi_{\mathcal{S}} = -\delta_{\mathcal{S}}(\lambda V)$ 

$$\bigtriangleup Q_{\mathcal{R}}(\lambda, t) = -\int_{0}^{t} \omega(\tau_{\lambda}^{s}(\Phi_{\mathcal{R}})) \mathrm{d}s \ (= -\omega(\tau_{\lambda}^{t}(H_{\mathcal{R}})) + \omega(H_{\mathcal{R}}))$$
where  $\Phi_{\mathcal{R}} = -\delta_{\mathcal{R}}(\lambda V)$ 

<ロ> (四) (四) (三) (三) (三)

# Mathematical setting 1st law

$$\bigtriangleup Q_{\mathcal{S}}(\lambda, t) = \bigtriangleup Q_{\mathcal{R}}(\lambda, t) + \lambda(\omega(\tau_{\lambda}^{t}(V)) - \omega(V)$$
  
We want to take first  $t \to \infty$  then  $\lambda \to 0$ 

Proposition (well known, BR2)

If  $V \in \mathcal{O}$ , then there exists  $(\tau_{\lambda}, \beta)$ -KMS state  $\omega_{\beta,\lambda}$ . Moreover

 $\lim_{\lambda\to 0}\omega_{\beta,\lambda}=\omega_{\beta,0}$ 

э

Annalisa Panati, CPT, Université de Toulon and McGill [3m Full counting statistics of return to equilibrium

# Mathematical setting

1st law

Assumptions -  $V \in \mathcal{O}$ : (hypothesis of previous proposition) -  $(\mathcal{O}, \tau_{\lambda}, \omega_{\beta,\lambda})$  is mixing for  $\lambda$  small enough i.e.

$$\lim_{t\to\infty}\xi(\tau^t_\lambda(A))=\omega_{\beta,\lambda}(A)$$

for all  $\xi \in \mathcal{N}_{\omega_{eta,\lambda}}$  (normal states)

# Mathematical setting

1st law

Assumptions -  $V \in \mathcal{O}$ : (hypothesis of previous proposition) -  $(\mathcal{O}, \tau_{\lambda}, \omega_{\beta,\lambda})$  is mixing for  $\lambda$  small enough i.e.

$$\lim_{\to\infty}\xi(\tau^t_\lambda(A))=\omega_{\beta,\lambda}(A)$$

for all  $\xi \in \mathcal{N}_{\omega_{eta,\lambda}}$  (normal states)

Remark Confined system are never mixing

t

# Mathematical setting

1st law

Assumptions -  $V \in \mathcal{O}$ : (hypothesis of previous proposition) -  $(\mathcal{O}, \tau_{\lambda}, \omega_{\beta,\lambda})$  is mixing for  $\lambda$  small enough i.e.

$$\lim_{t\to\infty}\xi(\tau^t_\lambda(A))=\omega_{\beta,\lambda}(A)$$

for all  $\xi \in \mathcal{N}_{\omega_{eta,\lambda}}$  (normal states)

Remark Confined system are never mixing

$$riangle Q_{\mathcal{S}}(\lambda,t) = riangle Q_{\mathcal{R}}(\lambda,t) + \lambda \left( \omega( au_{\lambda}^t(V)) - \omega(V) 
ight)$$

# Mathematical setting

1st law

Assumptions -  $V \in \mathcal{O}$ : (hypothesis of previous proposition) -  $(\mathcal{O}, \tau_{\lambda}, \omega_{\beta,\lambda})$  is mixing for  $\lambda$  small enough i.e.

$$\lim_{t\to\infty}\xi(\tau^t_\lambda(A))=\omega_{\beta,\lambda}(A)$$

for all  $\xi \in \mathcal{N}_{\omega_{eta,\lambda}}$  (normal states)

Remark Confined system are never mixing

$$\bigtriangleup Q_{\mathcal{S}}(\lambda) = \bigtriangleup Q_{\mathcal{R}}(\lambda) + \lambda \left( \omega_{\lambda}(V) - \omega(V) \right)$$

# Mathematical setting

1st law

Assumptions -  $V \in \mathcal{O}$ : (hypothesis of previous proposition) -  $(\mathcal{O}, \tau_{\lambda}, \omega_{\beta,\lambda})$  is mixing for  $\lambda$  small enough i.e.

$$\lim_{\to\infty}\xi(\tau^t_\lambda(A))=\omega_{\beta,\lambda}(A)$$

for all  $\xi \in \mathcal{N}_{\omega_{eta,\lambda}}$  (normal states)

Remark Confined system are never mixing

t

#### Conclusion

If V is  $\mathcal{O}$  and  $(\mathcal{O}, \tau_{\lambda}, \omega_{\beta,\lambda})$  is mixing then

$$\lim_{\lambda \to 0} \lim_{t \to \infty} \bigtriangleup Q_{\mathcal{S}}(\lambda, t) = \lim_{\lambda \to 0} \lim_{t \to \infty} \bigtriangleup Q_{\mathcal{R}}(\lambda, t)$$

#### Theorem (Jakšić, A.P., J. Panangaden, C-A. Pillet '14)

Let  $(\mathcal{O}, \tau_{\lambda}, \omega)$  as before  $(\tau_{\lambda} = \tau_0 + i[V, -])$ . Assume:

- $V \in \mathcal{O}$ ,
- $t 
  ightarrow au_{\lambda}^t(V)$  extends to an entire analytic function,
- $(\mathcal{O}, \tau_{\lambda}, \omega_{\lambda})$  is mixing for  $0 < |\lambda| < \lambda_0$ . Then

$$\mathbb{P}_{\mathcal{S}} := \lim_{\lambda \to 0} \lim_{t \to \infty} \mathbb{P}_{\mathcal{S}, \lambda, t} = \lim_{\lambda \to 0} \lim_{t \to \infty} \mathbb{P}_{\mathcal{R}, \lambda, t} =: \mathbb{P}_{\mathcal{R}}$$

# Full counting statistics

Full Counting Statistic-

several results in the context non-equilibrium /transport phenomena/fluctuation relations:

[Lesovik, Levitov 93][Levitov, Lee,Lesovik 96]

[Kurchan 00] [Klich 03][deRoeck, Maes 04] [Derezinski, de Roeck, Maes 07], [Avron Bachmann Graf Klich 07] [Tasaki Matsui 03] and others

(ロ) (同) (三) (三)

# Full counting statistics

Small system S:  $H_S = \sum_j e_j P_{e_j}$  where  $e_j \in \sigma(H_S) P_{e_j}$  associated spectral projections At time 0 we measure energy with outcome  $e_j$  with probability  $\omega(P_{e_j})$ Then the reduced state is

$$\omega_{am} = rac{1}{\omega(P_{e_j})} P_{e_j} 
ho_{\mathcal{S}} P_{e_j} \otimes \omega_{\mathcal{R}}$$

Let evolve for time t, and measure again. The outcome will be  $e_k$  with probability

$$\omega_{am}(\tau_{\lambda}^{t}(P_{e_{k}})) = \frac{1}{\omega(P_{e_{j}})} \left( P_{e_{j}} \rho_{\mathcal{S}} P_{e_{j}} \otimes \omega_{\mathcal{R}} \right) \left( \tau_{\lambda}^{t}(P_{e_{k}}) \right)$$

# Full counting statistics

hence the joint probability of measuring  $e_j$ ,  $e_k$  is

$$P_{e_j} \rho_{\mathcal{S}} P_{e_j} \otimes \omega_{\mathcal{R}}(\tau_{\lambda}^t(P_{e_k}))$$

Full Counting statistic of energy transfer is the atomic probability measure on  $\mathbb R$  defined by

$$\mathbb{P}_{\mathcal{S},\lambda,t}(\phi) = \sum_{e_j - e_k = \phi} P_{e_j} \rho_{\mathcal{S}} P_{e_j} \otimes \omega_{\mathcal{R}}(\tau_{\lambda}^t(P_{e_k}))$$

(probability distribution of the energy change measured with the protocol above)

$$riangle Q_{\mathcal{S}}(\lambda,t) = \int \phi \ \mathbb{P}_{\mathcal{S},\lambda,t}(\phi)$$

## Full counting statistics

Under mixing assumption

$$\mathbb{P}_{\mathcal{S},\lambda} := \lim_{t \to \infty} \mathbb{P}_{\mathcal{S},\lambda,t} = \sum_{e_j - e_k = \phi} \operatorname{tr}(\rho_{\mathcal{S}} P_{e_j}) \omega_{\lambda}(P_{e_k})$$

$$\mathbb{P}_{\mathcal{S}} := \lim_{\lambda \to 0} \mathbb{P}_{\mathcal{S},\lambda} = \sum_{e_j - e_k = \phi} \operatorname{tr}(\rho_{\mathcal{S}} P_{e_j}) \operatorname{tr}(\rho_{\mathcal{S}} P_{e_k})$$

・ロト ・ 同ト ・ ヨト ・ ヨト

臣

Annalisa Panati, CPT, Université de Toulon and McGill [3m Full counting statistics of return to equilibrium

## Full counting statistics

Reservoir  $\mathcal{R}$ : Let's pretend  $\mathcal{R}$  is a finite system. Let's give a parallel description to the one of system S $H_{\mathcal{R}} = \sum_{k} \epsilon_k P_{\epsilon_k}$ 

$$\mathbb{P}_{\mathcal{R},\lambda,t}(\phi) = \sum_{\epsilon_j - \epsilon_k = \phi} \operatorname{tr}(e^{-\mathrm{i}tH_{\lambda}}(\rho_{\mathcal{S}} \otimes \rho_{\mathcal{R}}P_{\epsilon_k})e^{\mathrm{i}tH_{\lambda}}\mathbb{1} \otimes P_{\epsilon_k})$$

$$\int e^{\mathrm{i}\alpha\phi} \mathrm{d}\mathbb{P}_{\mathcal{R},\lambda,t}(\phi) = \sum_{k,j} e^{i\alpha(\epsilon_j - \epsilon_k)} \mathrm{tr}(\mathbb{1} \otimes P_{\epsilon_k} e^{-\mathrm{i}tH_\lambda} (\mathbb{1} \otimes P_{\epsilon_j})(\rho_{\mathcal{S}} \otimes \rho_{\mathcal{R}}) e^{\mathrm{i}tH_\lambda})$$

臣

$$= \operatorname{tr}((\mathbb{1} \otimes \rho_{\mathcal{R}}^{i\frac{\alpha}{\beta}})(e^{-itH_{\lambda}}\rho_{\mathcal{S}} \otimes \rho_{\mathcal{R}}^{1-i\frac{\alpha}{\beta}}e^{itH_{\lambda}})) \\ = \omega(\triangle_{\eta_t|\eta}^{i\frac{\alpha}{\beta}}(\mathbb{1})) \quad \eta := \mathbb{1} \otimes \rho_{\mathcal{R}}$$

Annalisa Panati, CPT, Université de Toulon and McGill [3m Full counting statistics of return to equilibrium

# Full counting statistics- relative modular operator

Classical setting: Radon-Nikodym derivative  $\nu << \mu$  one can define  $\frac{d\mu}{d\nu}$  with property

(D) (A) (A)

# Full counting statistics- relative modular operator

Classical setting: Radon-Nikodym derivative  $\nu << \mu$  one can define  $\frac{d\mu}{d\nu}$  with property

$$\int f \mathbf{g} \mathrm{d}\mu = \int f \frac{\mathrm{d}\mu}{\mathrm{d}\nu} \mathbf{g} \mathrm{d}\nu$$

# Full counting statistics- relative modular operator

Classical setting: Radon-Nikodym derivative  $\nu \ll \mu$  one can define  $\frac{d\mu}{d\nu}$  with property

$$\mu(fg) = \nu(f \frac{\mathrm{d}\mu}{\mathrm{d}\nu}g)$$

(D) (A) (A)

# Full counting statistics- relative modular operator

Classical setting: Radon-Nikodym derivative  $\nu \ll \mu$  one can define  $\frac{d\mu}{d\nu}$  with property

$$\mu(fg) = \nu(f\frac{\mathrm{d}\mu}{\mathrm{d}\nu}g)$$

#### Quantum setting:

Given two states  $\nu,\mu,$  denote by  $\rho_{\nu},\rho_{\mu}$  the associated density matrices . Define

$$riangle_{\mu|
u}(\mathsf{A}) := 
ho_{
u} \mathsf{A} 
ho_{\mu}^{-1}$$

then

$$\mu(AB) = 
u(A riangle_{\mu|
u}(B))$$
 for all  $A, B \in \mathcal{O}$ 

## Full counting statistics- relative modular operator

One easly shows :

$$\omega(\triangle_{\eta_t|\eta}^{\mathrm{i}\frac{\alpha}{\beta}}(\mathbb{1})) = \mathrm{tr}((\mathbb{1}\otimes\rho_{\mathcal{R}}^{i\frac{\alpha}{\beta}})(e^{-i\lambda tH_{\lambda}}\rho_{\mathcal{S}}\otimes\rho_{\mathcal{R}}^{1-\mathrm{i}\frac{\alpha}{\beta}}e^{\mathrm{i}tH_{\lambda}}))$$

Remark In the canonical GNS representation associated to  

$$\omega = \operatorname{tr}(\rho_{\omega}-)$$
 faithful  
 $\mathcal{O} = \mathcal{H}_{\mathcal{O}}, (A, B)_{\omega} = \omega(A^*B)$   
 $\triangle_{\mu|\nu} : \mathcal{H}_{\mathcal{O}} \to \mathcal{H}_{\mathcal{O}}$   
 $\triangle_{\mu|\nu}(\psi_A) = \triangle_{\mu|\nu}(A) = \rho_{\nu}A\rho_{\mu}^{-1}$  is a self adjoint operator.

(D) (A) (A)

# Full counting statistics- relative modular operator

By algebraic theory,  $\triangle_{\eta_t|\eta}$  can be defined in a general setting (infinitely extended reservoir) and it is by construction a selfajoint operator on  $\mathcal{H}_{\mathcal{O}}$ 

We take as definition of  $\mathbb{P}_{\mathcal{R},\lambda,t}$  to be

$$\int e^{\mathrm{i}\alpha\phi}\mathrm{d}\mathbb{P}_{\mathcal{R},\lambda,t}:=\omega(\triangle_{\eta_t\mid\eta}^{\mathrm{i}\frac{\alpha}{\beta}}(1\!\!1))\quad\eta:=1\!\!1\otimes\omega_{\mathcal{R}}$$

In other words:

.

$$\mathbb{P}_{\mathcal{R},\lambda,t}$$
 is the spectral measure of  $-\frac{1}{\beta}\log riangle_{\eta_t|\eta}$   $\eta := 1 \otimes \omega_{\mathcal{R}}$ 

#### Theorem (Jakšić, A.P., J. Panangaden, C-A. Pillet '14)

Let  $(\mathcal{O}, \tau_{\lambda}, \omega)$  as before  $(\tau_{\lambda} = \tau_0 + i[V, -])$ . Assume:

- $V \in \mathcal{O}$ ,
- $t 
  ightarrow au_\lambda(V)$  extends to an entire analytic function,
- $(\mathcal{O}, \tau^t_{\lambda}, \omega_{\lambda})$  is mixing for  $0 < |\lambda| < \lambda_0$ . Then

$$\mathbb{P}_{\mathcal{S}} := \lim_{\lambda \to 0} \lim_{t \to \infty} \mathbb{P}_{\mathcal{S}, \lambda, t} = \lim_{\lambda \to 0} \lim_{t \to \infty} \mathbb{P}_{\mathcal{R}, \lambda, t} =: \mathbb{P}_{\mathcal{R}}$$

### a word about the proof

-write

$$\omega(\triangle_{\eta_t|\eta}^{\mathrm{i}\frac{\alpha}{\beta}}(\mathbb{1})) = \left(\hat{\Omega}_{\frac{\alpha}{\beta}}, e^{-\mathrm{i}tL_{\lambda}}\Omega_{\eta,\frac{\alpha}{\beta}}\right)$$

- the above identity make sense for  $\frac{\alpha}{\beta}=\frac{1}{2}+{\rm i}s$  ,  $s\in\mathbb{R},$  extend the identity by analyticity

- use established result

 $(\mathcal{O}, au_{\lambda}, \omega_{\lambda})$  mixing iff $w - \lim_{t o \infty} e^{-\mathrm{i}tL_{\lambda}} = rac{1}{||\Omega_{\lambda}||} |\Omega_{\lambda} 
angle \langle \Omega_{\lambda}|$ 

# Remarks

-Mixing hypothesis has been proved for many physical models for both bosonic and fermionc resevoirs bosonic reservoir [BachFröhlich SigalS 00], [Derezinski Jakšić 03] [FröhlichMerkli04] [deRoeckKupianen11], fermionic reservoirs [AizenstadtMalyshev87], [Aschbacher,Jakšić PautratPillet07], [FröhlichMerkliUeltschi03] [FröhlichMerkliSchwarzUeltschi03][Jakšić Pillet97]

(locally interacting fermionic system [BotvichMalyshev83], [Jakšić OgataPillet07])

(D) (A) (A) (A)

-  $V \in \mathcal{O}$  restricts our analysis to bounded perturbations- in concrete models V unbounded for bosonic reservoirs.