Full counting statistics of return to equilibrium

> Annalisa Panati, CPT, Université de Toulon and McGill
joint work with V. Jakšić, J. Panangaden, C-A. Pillet
(1) 1st law- physical picture
(2) 1st law general- mathematical setting
(3) Full counting statistics
(4) Result

Annalisa Panati, CPT, Université de Toulon and McGill [3m Full counting statistics of return to equilibrium

Physical picture

Physical picture

We consider the context of return to equilibrium

Physical picture

We consider the context of return to equilibrium Oth law of thermodynamics:
an isolated systems out of equilibrium reaches "rapidly enough" an equilibrium state (characterized by macroscopic parameters)

Physical picture

We consider the context of return to equilibrium
Oth law of thermodynamics:
two interacting isolated systems out of equilibrium reach "rapidly enough" an equilibrium state (characterized by macroscopic parameters)

Physical picture

We consider the context of return to equilibrium
Oth law of thermodynamics:
two interacting isolated systems out of equilibrium reach "rapidly enough" an equilibrium state (characterized by macroscopic parameters)
1st law - conservation of energy:

$$
\triangle Q_{1}=\triangle Q_{2}
$$

Slightly diffrent situation: system $1=$ small system \mathcal{S}
system 2 = reservoir \mathcal{R}
Statistical mechanics: derive macroscopic law from (quantum) microscopic law

Mathematical setting

small system \mathcal{S}

$\mathcal{H}_{\mathcal{S}}$ Hilbert space $\operatorname{dimH}_{\mathcal{S}}<\infty$

$$
H: \mathcal{H}_{\mathcal{S}} \rightarrow \mathcal{H}_{\mathcal{S}}
$$

$$
\mathcal{O}_{\mathcal{S}}=\mathcal{B}\left(\mathcal{H}_{\mathcal{S}}\right)
$$

$$
\omega_{\mathcal{S}}: \mathcal{O}_{\mathcal{S}} \rightarrow \mathbb{C} \quad \omega_{\mathcal{S}}(A)=\operatorname{tr}\left(\rho_{S} A\right)
$$

$$
\tau_{\mathcal{S}}^{t}: \mathcal{O}_{\mathcal{S}} \rightarrow \mathcal{O}_{\mathcal{S}}
$$

$$
A \rightarrow \quad \tau_{t}(A)=A_{t}:=e^{\mathrm{i} t H_{\mathcal{S}}} A e^{-\mathrm{i} t H_{\mathcal{S}}}
$$

$\tau_{\mathcal{S}}^{t}$ strongly continous in t with generator $\delta_{\mathcal{S}}=\mathrm{i}\left[H_{\mathcal{S}},-\right]$
$\left(\mathcal{O}_{\mathcal{S}}, \tau_{\mathcal{S}}^{t}, \omega_{\mathcal{S}}\right)$ is a dynamical system
equilibrium state: $\omega_{\beta}(A):=\frac{\operatorname{tr}\left(\rho_{\beta} A\right)}{\operatorname{tr} \rho_{\beta}} \quad \rho_{\beta}:=e^{-\beta H_{\mathcal{S}}}$

Mathematical setting

reservoir \mathcal{R}
$\mathcal{H}_{\mathcal{R}}$ Hilbert space,
$H: \mathcal{H}_{\mathcal{R}} \rightarrow \mathcal{H}_{\mathcal{R}}$
$\mathcal{O}_{\mathcal{R}} \subset \mathcal{B}\left(H_{\mathcal{R}}\right)$
$\omega_{\mathcal{R}}: \mathcal{O}_{\mathcal{R}} \rightarrow \mathbb{C} \quad \omega_{\mathcal{R}}(A)=\operatorname{tr}\left(\rho_{R} A\right)$
$\tau_{\mathcal{R}}^{t}: \mathcal{O}_{\mathcal{R}} \rightarrow \mathcal{O}_{\mathcal{R}}$
$A \rightarrow \quad \tau_{t}(A)=A_{t}:=e^{\mathrm{i} t H_{\mathcal{R}}} A e^{-\mathrm{i} t H_{\mathcal{R}}}$
$\tau_{\mathcal{R}}^{t}$ strongly continous in t with generator $\delta_{\mathcal{R}}=\mathrm{i}\left[H_{\mathcal{R}},-\right]$

Mathematical setting

reservoir \mathcal{R}
$\left(\mathcal{O}_{\mathcal{R}}, \tau_{\mathcal{R}}^{t}, \omega_{\mathcal{R}}\right)$
$\mathcal{O}_{\mathcal{R}}-C^{*}-$ algebra
$\tau_{\mathcal{R}}^{t}: \mathcal{O}_{\mathcal{R}} \rightarrow \mathcal{O}_{\mathcal{R}}{ }^{*-}$ automorphism strongly continuous in t with generator $\delta_{R}: D\left(\delta_{R}\right) \subset \mathcal{O}_{\mathcal{R}} \rightarrow \mathcal{O}_{\mathcal{R}}$
$\omega_{\mathcal{R}, \beta}$ equilibrium state: $\left(\tau_{\mathcal{R}}^{t}, \beta\right) \mathrm{KMS}$ State (hence faithful) $\left(\omega_{\mathcal{R}, \beta}:=\frac{\operatorname{tr}\left(\rho_{\beta} A\right)}{\operatorname{tr} \rho_{\beta}} \quad \rho_{\beta}:=e^{-\beta H_{\mathcal{R}}}\right.$ when the above expression is well defined)

Mathematical setting

Full system free dynamics:
$\left(\mathcal{O}, \tau_{0}, \omega_{0}\right)$
with $\mathcal{O}:=\mathcal{O}_{\mathcal{S}} \otimes \mathcal{O}_{\mathcal{R}}$
$\tau_{0}:=\tau_{\mathcal{S}} \otimes \tau_{\mathcal{R}}$
$\omega_{0}:=\omega_{\mathcal{S}} \otimes \omega_{\mathcal{R}, \beta}$
$\omega_{\beta, 0}:=\omega_{\mathcal{S}, \beta} \otimes \omega_{\mathcal{R}, \beta}$
Full system interacting dynamics: $\left(\mathcal{O}, \tau_{\lambda}, \omega_{0}\right)$
τ_{λ} with generator $\delta=\delta_{0}+i \lambda[V,-], V=V^{*}, V \in \mathcal{O}$
To simplify notation $\omega_{0}=: \omega$

Mathematical setting

1st law

$$
\triangle Q_{\mathcal{S}}(\lambda, t)=\omega\left(\tau_{\lambda}^{t}\left(H_{\mathcal{S}}\right)\right)-\omega\left(H_{\mathcal{S}}\right)=\int_{0}^{t} \omega\left(\tau_{\lambda}^{s}\left(\Phi_{\mathcal{S}}\right)\right) \mathrm{d} s
$$

where $\Phi_{\mathcal{S}}=-\delta_{\mathcal{S}}(\lambda V)$

Mathematical setting

1st law

$$
\triangle Q_{\mathcal{S}}(\lambda, t)=\omega\left(\tau_{\lambda}^{t}\left(H_{\mathcal{S}}\right)\right)-\omega\left(H_{\mathcal{S}}\right)=\int_{0}^{t} \omega\left(\tau_{\lambda}^{s}\left(\Phi_{\mathcal{S}}\right)\right) \mathrm{d} s
$$

where $\Phi_{\mathcal{S}}=-\delta_{\mathcal{S}}(\lambda V)$

$$
\triangle Q_{\mathcal{R}}(\lambda, t)=-\int_{0}^{t} \omega\left(\tau_{\lambda}^{s}\left(\Phi_{\mathcal{R}}\right)\right) \mathrm{d} s
$$

where $\Phi_{\mathcal{R}}=-\delta_{\mathcal{R}}(\lambda V)$

Mathematical setting

1st law

$$
\triangle Q_{\mathcal{S}}(\lambda, t)=\omega\left(\tau_{\lambda}^{t}\left(H_{\mathcal{S}}\right)\right)-\omega\left(H_{\mathcal{S}}\right)=\int_{0}^{t} \omega\left(\tau_{\lambda}^{s}\left(\Phi_{\mathcal{S}}\right)\right) \mathrm{d} s
$$

where $\Phi_{\mathcal{S}}=-\delta_{\mathcal{S}}(\lambda V)$

$$
\triangle Q_{\mathcal{R}}(\lambda, t)=-\int_{0}^{t} \omega\left(\tau_{\lambda}^{s}\left(\Phi_{\mathcal{R}}\right)\right) \mathrm{d} s\left(=-\omega\left(\tau_{\lambda}^{t}\left(H_{\mathcal{R}}\right)\right)+\omega\left(H_{\mathcal{R}}\right)\right)
$$

where $\Phi_{\mathcal{R}}=-\delta_{\mathcal{R}}(\lambda V)$

Mathematical setting

1st law

$\triangle Q_{\mathcal{S}}(\lambda, t)=\triangle Q_{\mathcal{R}}(\lambda, t)+\lambda\left(\omega\left(\tau_{\lambda}^{t}(V)\right)-\omega(V)\right.$
We want to take first $t \rightarrow \infty$ then $\lambda \rightarrow 0$
Proposition (well known, BR2)
If $V \in \mathcal{O}$, then there exists $\left(\tau_{\lambda}, \beta\right)-K M S$ state $\omega_{\beta, \lambda}$. Moreover

$$
\lim _{\lambda \rightarrow 0} \omega_{\beta, \lambda}=\omega_{\beta, 0}
$$

Mathematical setting

1st law
Assumptions - $V \in \mathcal{O}$: (hypothesis of previous proposition)

- $\left(\mathcal{O}, \tau_{\lambda}, \omega_{\beta, \lambda}\right)$ is mixing for λ small enough i.e.

$$
\lim _{t \rightarrow \infty} \xi\left(\tau_{\lambda}^{t}(A)\right)=\omega_{\beta, \lambda}(A)
$$

for all $\xi \in \mathcal{N}_{\omega_{\beta, \lambda}}$ (normal states)

Mathematical setting

1st law
Assumptions - $V \in \mathcal{O}$: (hypothesis of previous proposition)

- $\left(\mathcal{O}, \tau_{\lambda}, \omega_{\beta, \lambda}\right)$ is mixing for λ small enough i.e.

$$
\lim _{t \rightarrow \infty} \xi\left(\tau_{\lambda}^{t}(A)\right)=\omega_{\beta, \lambda}(A)
$$

for all $\xi \in \mathcal{N}_{\omega_{\beta, \lambda}}$ (normal states)
Remark Confined system are never mixing

Mathematical setting

1st law
Assumptions - $V \in \mathcal{O}$: (hypothesis of previous proposition)

- $\left(\mathcal{O}, \tau_{\lambda}, \omega_{\beta, \lambda}\right)$ is mixing for λ small enough i.e.

$$
\lim _{t \rightarrow \infty} \xi\left(\tau_{\lambda}^{t}(A)\right)=\omega_{\beta, \lambda}(A)
$$

for all $\xi \in \mathcal{N}_{\omega_{\beta, \lambda}}$ (normal states)
Remark Confined system are never mixing
$\triangle Q_{\mathcal{S}}(\lambda, t)=\triangle Q_{\mathcal{R}}(\lambda, t)+\lambda\left(\omega\left(\tau_{\lambda}^{t}(V)\right)-\omega(V)\right)$

Mathematical setting

1st law
Assumptions - $V \in \mathcal{O}$: (hypothesis of previous proposition)

- $\left(\mathcal{O}, \tau_{\lambda}, \omega_{\beta, \lambda}\right)$ is mixing for λ small enough i.e.

$$
\lim _{t \rightarrow \infty} \xi\left(\tau_{\lambda}^{t}(A)\right)=\omega_{\beta, \lambda}(A)
$$

for all $\xi \in \mathcal{N}_{\omega_{\beta, \lambda}}$ (normal states)
Remark Confined system are never mixing
$\triangle Q_{\mathcal{S}}(\lambda)=\triangle Q_{\mathcal{R}}(\lambda)+\lambda\left(\omega_{\lambda}(V)-\omega(V)\right)$

Mathematical setting

1st law

Assumptions - $V \in \mathcal{O}$: (hypothesis of previous proposition)

- $\left(\mathcal{O}, \tau_{\lambda}, \omega_{\beta, \lambda}\right)$ is mixing for λ small enough i.e.

$$
\lim _{t \rightarrow \infty} \xi\left(\tau_{\lambda}^{t}(A)\right)=\omega_{\beta, \lambda}(A)
$$

for all $\xi \in \mathcal{N}_{\omega_{\beta, \lambda}}$ (normal states)
Remark Confined system are never mixing

Conclusion

If V is \mathcal{O} and $\left(\mathcal{O}, \tau_{\lambda}, \omega_{\beta, \lambda}\right)$ is mixing then

$$
\lim _{\lambda \rightarrow 0} \lim _{t \rightarrow \infty} \triangle Q_{\mathcal{S}}(\lambda, t)=\lim _{\lambda \rightarrow 0} \lim _{t \rightarrow \infty} \triangle Q_{\mathcal{R}}(\lambda, t)
$$

Theorem (Jakšić, A.P., J. Panangaden, C-A. Pillet '14)

Let $\left(\mathcal{O}, \tau_{\lambda}, \omega\right)$ as before $\left(\tau_{\lambda}=\tau_{0}+\mathrm{i}[V,-]\right)$.
Assume:

- $V \in \mathcal{O}$,
- $t \rightarrow \tau_{\lambda}^{t}(V)$ extends to an entire analytic function,
- $\left(\mathcal{O}, \tau_{\lambda}, \omega_{\lambda}\right)$ is mixing for $0<|\lambda|<\lambda_{0}$. Then

$$
\mathbb{P}_{\mathcal{S}}:=\lim _{\lambda \rightarrow 0} \lim _{t \rightarrow \infty} \mathbb{P}_{\mathcal{S}, \lambda, t}=\lim _{\lambda \rightarrow 0} \lim _{t \rightarrow \infty} \mathbb{P}_{\mathcal{R}, \lambda, t}=: \mathbb{P}_{\mathcal{R}}
$$

Full counting statistics

Full Counting Statistic-
several results in the context non-equilibrium /transport phenomena/fluctuation relations:
[Lesovik, Levitov 93][Levitov, Lee,Lesovik 96]
[Kurchan 00] [Klich 03][deRoeck, Maes 04] [Derezinski, de Roeck, Maes 07], [Avron Bachmann Graf Klich 07] [Tasaki Matsui 03] and others

Full counting statistics

Small system $\mathcal{S}: H_{\mathcal{S}}=\sum_{j} e_{j} P_{e_{j}}$ where $e_{j} \in \sigma\left(H_{\mathcal{S}}\right) P_{e_{j}}$ associated spectral projections
At time 0 we measure energy with outcome e_{j} with probability $\omega\left(P_{e_{j}}\right)$
Then the reduced state is

$$
\omega_{a m}=\frac{1}{\omega\left(P_{e_{j}}\right)} P_{e_{j}} \rho_{\mathcal{S}} P_{e_{j}} \otimes \omega_{\mathcal{R}}
$$

Let evolve for time t, and measure again. The outcome will be e_{k} with probability

$$
\omega_{a m}\left(\tau_{\lambda}^{t}\left(P_{e_{k}}\right)\right)=\frac{1}{\omega\left(P_{e_{j}}\right)}\left(P_{e_{j}} \rho_{\mathcal{S}} P_{e_{j}} \otimes \omega_{\mathcal{R}}\right)\left(\tau_{\lambda}^{t}\left(P_{e_{k}}\right)\right)
$$

Full counting statistics

hence the joint probability of measuring e_{j}, e_{k} is

$$
P_{e_{j}} \rho_{\mathcal{S}} P_{e_{j}} \otimes \omega_{\mathcal{R}}\left(\tau_{\lambda}^{t}\left(P_{e_{k}}\right)\right)
$$

Full Counting statistic of energy transfer is the atomic probability measure on \mathbb{R} defined by

$$
\mathbb{P}_{\mathcal{S}, \lambda, t}(\phi)=\sum_{e_{j}-e_{k}=\phi} P_{e_{j}} \rho_{\mathcal{S}} P_{e_{j}} \otimes \omega_{\mathcal{R}}\left(\tau_{\lambda}^{t}\left(P_{e_{k}}\right)\right)
$$

(probability distribution of the energy change measured with the protocol above)

$$
\triangle Q_{\mathcal{S}}(\lambda, t)=\int \phi \mathbb{P}_{\mathcal{S}, \lambda, t}(\phi)
$$

Full counting statistics

Under mixing assumption

$$
\begin{aligned}
\mathbb{P}_{\mathcal{S}, \lambda} & :=\lim _{t \rightarrow \infty} \mathbb{P}_{\mathcal{S}, \lambda, t}=\sum_{e_{j}-e_{k}=\phi} \operatorname{tr}\left(\rho_{\mathcal{S}} P_{e_{j}}\right) \omega_{\lambda}\left(P_{e_{k}}\right) \\
\mathbb{P}_{\mathcal{S}} & :=\lim _{\lambda \rightarrow 0} \mathbb{P}_{\mathcal{S}, \lambda}=\sum_{e_{j}-e_{k}=\phi} \operatorname{tr}\left(\rho_{\mathcal{S}} P_{e_{j}}\right) \operatorname{tr}\left(\rho_{\mathcal{S}} P_{e_{k}}\right)
\end{aligned}
$$

Full counting statistics

Reservoir \mathcal{R} : Let's pretend \mathcal{R} is a finite system. Let's give a parallel description to the one of system \mathcal{S}

$$
H_{\mathcal{R}}=\sum_{k} \epsilon_{k} P_{\epsilon_{k}}
$$

$$
\mathbb{P}_{\mathcal{R}, \lambda, t}(\phi)=\sum_{\epsilon_{j}-\epsilon_{k}=\phi} \operatorname{tr}\left(e^{-\mathrm{i} t H_{\lambda}}\left(\rho_{\mathcal{S}} \otimes \rho_{\mathcal{R}} P_{\epsilon_{k}}\right) e^{\mathrm{i} t H_{\lambda}} \mathbb{1} \otimes P_{\epsilon_{k}}\right)
$$

$$
\int e^{\mathrm{i} \alpha \phi} \mathrm{~d} \mathbb{P}_{\mathcal{R}, \lambda, t}(\phi)=\sum_{k, j} e^{i \alpha\left(\epsilon_{j}-\epsilon_{k}\right)} \operatorname{tr}\left(\mathbb{1} \otimes P_{\epsilon_{k}} e^{-\mathrm{i} t H_{\lambda}}\left(\mathbb{1} \otimes P_{\epsilon_{j}}\right)\left(\rho_{\mathcal{S}} \otimes \rho_{\mathcal{R}}\right) e^{\mathrm{i} t H_{\lambda}}\right)
$$

$$
\begin{gathered}
=\operatorname{tr}\left(\left(\mathbb{1} \otimes \rho_{\mathcal{R}}^{i \frac{\alpha}{\beta}}\right)\left(e^{-i t H_{\lambda}} \rho_{\mathcal{S}} \otimes \rho_{\mathcal{R}}^{1-\mathrm{i} \frac{\alpha}{\beta}} e^{\mathrm{i} t H_{\lambda}}\right)\right) \\
=\omega\left(\triangle_{\eta_{t} \mid \eta}^{\mathrm{i} \frac{\alpha}{\beta}}(\mathbb{1})\right) \quad \eta:=\mathbb{1} \otimes \rho_{\mathcal{R}}
\end{gathered}
$$

Full counting statistics- relative modular operator

Classical setting: Radon-Nikodym derivative $\nu \ll \mu$ one can define $\frac{\mathrm{d} \mu}{\mathrm{d} \nu}$ with property

Full counting statistics- relative modular operator

Classical setting: Radon-Nikodym derivative $\nu \ll \mu$ one can define $\frac{\mathrm{d} \mu}{\mathrm{d} \nu}$ with property

$$
\int f g \mathrm{~d} \mu=\int f \frac{\mathrm{~d} \mu}{\mathrm{~d} \nu} g \mathrm{~d} \nu
$$

Full counting statistics- relative modular operator

Classical setting: Radon-Nikodym derivative $\nu \ll \mu$ one can define $\frac{\mathrm{d} \mu}{\mathrm{d} \nu}$ with property

$$
\mu(f g)=\nu\left(f \frac{\mathrm{~d} \mu}{\mathrm{~d} \nu} g\right)
$$

Full counting statistics- relative modular operator

Classical setting: Radon-Nikodym derivative $\nu \ll \mu$ one can define $\frac{\mathrm{d} \mu}{\mathrm{d} \nu}$ with property

$$
\mu(f g)=\nu\left(f \frac{\mathrm{~d} \mu}{\mathrm{~d} \nu} g\right)
$$

Quantum setting:

Given two states ν, μ, denote by ρ_{ν}, ρ_{μ} the associated density matrices. Define

$$
\triangle_{\mu \mid \nu}(A):=\rho_{\nu} A \rho_{\mu}^{-1}
$$

then

$$
\mu(A B)=\nu\left(A \triangle_{\mu \mid \nu}(B)\right) \quad \text { for all } A, B \in \mathcal{O}
$$

Full counting statistics- relative modular operator

One easly shows :

$$
\omega\left(\triangle_{\eta_{t} \mid \eta}^{\mathrm{i} \frac{\alpha}{\beta}}(\mathbb{1})\right)=\operatorname{tr}\left(\left(\mathbb{1} \otimes \rho_{\mathcal{R}}^{i \frac{\alpha}{\beta}}\right)\left(e^{-i \lambda t H_{\lambda}} \rho_{\mathcal{S}} \otimes \rho_{\mathcal{R}}^{1-\mathrm{i} \frac{\alpha}{\beta}} e^{\mathrm{i} t H_{\lambda}}\right)\right)
$$

Remark In the canonical GNS representation associated to
$\omega=\operatorname{tr}\left(\rho_{\omega}-\right)$ faithful
$\mathcal{O}=\mathcal{H}_{\mathcal{O}},(A, B)_{\omega}=\omega\left(A^{*} B\right)$
$\triangle_{\mu \mid \nu}: \mathcal{H}_{\mathcal{O}} \rightarrow \mathcal{H}_{\mathcal{O}}$
$\triangle_{\mu \mid \nu}\left(\psi_{A}\right)=\triangle_{\mu \mid \nu}(A)=\rho_{\nu} A \rho_{\mu}^{-1}$ is a self adjoint operator.

Full counting statistics- relative modular operator

By algebraic theory, $\triangle_{\eta_{t} \mid \eta}$ can be defined in a general setting (infinitely extended reservoir) and it is by construction a selfajoint operator on $\mathcal{H}_{\mathcal{O}}$

We take as definition of $\mathbb{P}_{\mathcal{R}, \lambda, t}$ to be

$$
\int e^{\mathrm{i} \alpha \phi} \mathrm{~d} \mathbb{P}_{\mathcal{R}, \lambda, t}:=\omega\left(\triangle_{\eta_{t} \mid \eta}^{\mathrm{i} \frac{\alpha}{\beta}}(\mathbb{1})\right) \quad \eta:=\mathbb{1} \otimes \omega_{\mathcal{R}}
$$

In other words:

$$
\mathbb{P}_{\mathcal{R}, \lambda, t} \text { is the spectral measure of }-\frac{1}{\beta} \log \triangle_{\eta_{t} \mid \eta} \quad \eta:=\mathbb{1} \otimes \omega_{\mathcal{R}}
$$

Theorem (Jakšić, A.P., J. Panangaden, C-A. Pillet '14)

Let $\left(\mathcal{O}, \tau_{\lambda}, \omega\right)$ as before $\left(\tau_{\lambda}=\tau_{0}+\mathrm{i}[V,-]\right)$.
Assume:

- $V \in \mathcal{O}$,
- $t \rightarrow \tau_{\lambda}(V)$ extends to an entire analytic function,
- $\left(\mathcal{O}, \tau_{\lambda}^{t}, \omega_{\lambda}\right)$ is mixing for $0<|\lambda|<\lambda_{0}$. Then

$$
\mathbb{P}_{\mathcal{S}}:=\lim _{\lambda \rightarrow 0} \lim _{t \rightarrow \infty} \mathbb{P}_{\mathcal{S}, \lambda, t}=\lim _{\lambda \rightarrow 0} \lim _{t \rightarrow \infty} \mathbb{P}_{\mathcal{R}, \lambda, t}=: \mathbb{P}_{\mathcal{R}}
$$

a word about the proof

-write

$$
\omega\left(\triangle_{\eta_{t} \mid \eta}^{\mathrm{i} \frac{\alpha}{\beta}}(\mathbb{1})\right)=\left(\hat{\Omega}_{\frac{\alpha}{\beta}}, e^{-\mathrm{i} t L_{\lambda}} \Omega_{\eta, \frac{\alpha}{\beta}}\right)
$$

- the above identity make sense for $\frac{\alpha}{\beta}=\frac{1}{2}+$ is, $s \in \mathbb{R}$, extend the identity by analyticity
- use established result
$\left(\mathcal{O}, \tau_{\lambda}, \omega_{\lambda}\right)$ mixing iff

$$
w-\lim _{t \rightarrow \infty} e^{-\mathrm{i} t L_{\lambda}}=\frac{1}{\left|\left|\Omega_{\lambda}\right|\right|}\left|\Omega_{\lambda}\right\rangle\left\langle\Omega_{\lambda}\right|
$$

Remarks

-Mixing hypothesis has been proved for many physical models for both bosonic and fermionc resevoirs bosonic reservoir [BachFröhlich SigalS 00], [Derezinski Jakšić 03] [FröhlichMerkli04] [deRoeckKupianen11], fermionic reservoirs [AizenstadtMalyshev87], [Aschbacher, Jakšić PautratPillet07], [FröhlichMerkliUeltschi03] [FröhlichMerkliSchwarzUeltschi03][Jakšić Pillet97]
(locally interacting fermionic system [BotvichMalyshev83], [Jakšić OgataPillet07])

- $V \in \mathcal{O}$ restricts our analysis to bounded perturbations- in concrete models V unbounded for bosonic reservoirs.

