Spectral and Scattering Properties of Twisted Waveguides

Spectral Days, CIRM, Luminy
June 10, 2014

Based on the following works:

- Ph. Briet, H. Kovarik, G. Raikov, E. Soccorsi, Eigenvalue asymptotics in a twisted waveguide, Commun. P.D.E., 34 (2009), 818-836.
- Ph. Briet, H. Kovarik, G. Raikov, Scattering in twisted waveguides, J. Funct. Anal. 266 (2014), 1 - 35.
- G. Raikov, Spectral asymptotics for waveguides with perturbed periodic twisting, Preprint, 2014.

1. The Dirichlet Laplacian in a Twisted Waveguide

Let

- $\omega \subset \mathbb{R}^{2}$ be a bounded domain with C^{2} boundary, such that $0 \in \omega$;
- $\Omega:=\omega \times \mathbb{R}$;
- $\theta \in C^{1}(\mathbb{R} ; \mathbb{R}), \theta^{\prime} \in \mathrm{L}^{\infty}(\mathbb{R})$.

Introduce the twisted waveguide

$$
\Omega_{\theta}:=\left\{r_{\theta}\left(x_{3}\right) \mathbf{x}, \mathbf{x} \in \Omega\right\}
$$

where

$$
r_{\theta}\left(x_{3}\right):=\left(\begin{array}{ccc}
\cos \theta\left(x_{3}\right) & \sin \theta\left(x_{3}\right) & 0 \\
-\sin \theta\left(x_{3}\right) & \cos \theta\left(x_{3}\right) & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Define the Dirichlet Laplacian $-\Delta^{D}$ as the self-adjoint operator generated in $L^{2}\left(\Omega_{\theta}\right)$ by the closed quadratic form

$$
\begin{aligned}
\widetilde{\mathcal{Q}}_{\theta}[f]:=\int_{\Omega_{\theta}}|\nabla f(\mathbf{x})|^{2} d \mathbf{x}, \\
f \in \mathrm{D}\left(\widetilde{\mathcal{Q}}_{\theta}\right):=\mathrm{H}_{0}^{1}\left(\Omega_{\theta}\right) .
\end{aligned}
$$

Let $\mathcal{U}: \mathrm{L}^{2}\left(\Omega_{\theta}\right) \rightarrow \mathrm{L}^{2}(\Omega)$ be the unitary operator given by

$$
(\mathcal{U} f)(\mathrm{x})=f\left(r_{\theta}\left(x_{3}\right) \mathrm{x}\right), \mathrm{x} \in \Omega, f \in \mathrm{~L}^{2}\left(\Omega_{\theta}\right)
$$

Set

$$
\begin{gathered}
\nabla_{t}:=\left(\partial_{1}, \partial_{2}\right), \quad \Delta_{t}:=\partial_{1}^{2}+\partial_{2}^{2} \\
\partial_{\varphi}:=x_{1} \partial_{2}-x_{2} \partial_{1} .
\end{gathered}
$$

Define the operator $H_{\theta^{\prime}}$ as the self-adjoint operator generated in $L^{2}(\Omega)$ by the closed quadratic form

$$
\begin{gathered}
\mathcal{Q}_{\theta^{\prime}}[f]:=\int_{\Omega}\left(\left|\nabla_{t} f\right|^{2}+\left|\theta^{\prime}\left(x_{3}\right) \partial_{\varphi} f+\partial_{3} f\right|^{2}\right) d \mathbf{x}, \\
f \in D\left(\mathcal{Q}_{\theta^{\prime}}\right):=\mathrm{H}_{0}^{1}(\Omega) .
\end{gathered}
$$

Evidently, $H_{\theta^{\prime}}$ is strictly positive, and hence invertible, in $\mathrm{L}^{2}(\Omega)$.

Proposition 1. Assume that $\omega \subset \mathbb{R}^{2}$ is a bounded domain with boundary $\partial \omega \in C^{2}$, and $\theta \in$ $C^{2}(\mathbb{R} ; \mathbb{R})$ with $\theta^{\prime}, \theta^{\prime \prime} \in \mathrm{L}^{\infty}(\mathbb{R})$. Then the domain of the operator $H_{\theta^{\prime}}$ coincides with $\mathrm{H}^{2}(\Omega) \cap$ $H_{0}^{1}(\Omega)$.

The operator H_{g} acts on its domain as

$$
H_{\theta^{\prime}}=-\Delta_{t}-\left(\theta^{\prime}\left(x_{3}\right) \partial_{\varphi}+\partial_{3}\right)^{2}
$$

Since

$$
\mathcal{Q}_{\theta^{\prime}}[f]=\tilde{\mathcal{Q}}_{\theta}\left[\mathcal{U}^{-1} f\right], \quad f \in \mathrm{H}_{0}^{1}(\Omega),
$$

and \mathcal{U} maps bijectively $H_{0}^{1}\left(\Omega_{\theta}\right)$ onto $H_{0}^{1}(\Omega)$, we have

$$
H_{\theta^{\prime}}=\mathcal{U}\left(-\Delta^{D}\right) \mathcal{U}^{-1}
$$

i.e. $-\Delta^{D}$ is unitarily equivalent to $H_{\theta^{\prime}}$.

2. Existence and completeness of the wave operators

Theorem 2. Assume that $\omega \subset \mathbb{R}^{2}$ is a bounded domain with C^{2}-boundary. Let $\theta_{j} \in C^{2}(\mathbb{R} ; \mathbb{R})$ with $\theta_{j}^{\prime}, \theta_{j}^{\prime \prime} \in \mathrm{L}^{\infty}(\mathbb{R}), j=1,2$. Suppose that there exist $\alpha>1$ and $C \in[0, \infty)$ such that

$$
\left|\theta_{1}^{\prime}(x)-\theta_{2}^{\prime}(x)\right| \leq C(1+|x|)^{-\alpha}, \quad x \in \mathbb{R} .
$$

Then the operator $H_{\theta_{1}^{\prime}}^{-2}-H_{\theta_{2}^{\prime}}^{-2}$ is trace class.
Corollary 3. Under the assumptions of Theorem 2 the wave operators

$$
s-\lim _{t \rightarrow \mp \infty} \exp \left(i t H_{\theta_{1}^{\prime}}\right) \exp \left(-i t H_{\theta_{2}^{\prime}}\right) P \mathrm{ac}\left(H_{\theta_{2}^{\prime}}\right)
$$

for the operator pair $\left(H_{\theta_{1}^{\prime}}, H_{\theta_{2}^{\prime}}\right)$ exist and are complete. Therefore, the absolutely continuous parts of $H_{\theta_{1}^{\prime}}$ and $H_{\theta_{2}^{\prime}}$ are unitarily equivalent, and, in particular,

$$
\sigma_{\mathrm{ac}}\left(H_{\theta_{1}^{\prime}}\right)=\sigma_{\mathrm{ac}}\left(H_{\theta_{2}^{\prime}}\right) .
$$

3. Constant twisting

Assume that there exists a $\beta \in \mathbb{R}$ such that $\theta^{\prime}\left(x_{3}\right)=\beta$ for every $x_{3} \in \mathbb{R}$.

Let \mathcal{F} be the partial Fourier transform with respect to x_{3}, i.e.

$$
(\mathcal{F} u)\left(x_{t}, k\right):=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i k x_{3}} u\left(x_{t}, x_{3}\right) d x_{3}
$$

for $u \in L^{2}(\omega ; \mathcal{S}(\mathbb{R}))$. We have

$$
\mathcal{F} H_{\beta} \mathcal{F}^{*}=\int_{\mathbb{R}}^{\oplus} h_{\beta}(k) d k
$$

where

$$
h_{\beta}(k):=-\Delta_{t}-\left(\beta \partial_{\varphi}+i k\right)^{2}, \quad k \in \mathbb{R} .
$$

For each $k \in \mathbb{R}$ the spectrum of the operator $h_{\beta}(k)$ is discrete. Let

$$
\left\{E_{j}(k)\right\}_{j=1}^{\infty}=\left\{E_{j}(k, \beta)\right\}_{j=1}^{\infty}
$$

be the non-decreasing sequence of its eigenvalues.

The functions

$$
\mathbb{R} \ni k \mapsto E_{j}(k) \in(0, \infty), \quad j \in \mathbb{N},
$$

are continuous piecewise analytic functions.

Moreover,

$$
E_{j}(k)=k^{2}(1+o(1)), \quad k \rightarrow \pm \infty .
$$

Hence,

$$
\sigma\left(H_{\beta}\right)=\sigma_{\mathrm{ac}}\left(H_{\beta}\right)=\cup_{j \in \mathbb{N}} E_{j}(\mathbb{R})=\left[\mathcal{E}_{0}^{+}, \infty\right)
$$

with

$$
\mathcal{E}_{0}^{+}:=\min _{k \in \mathbb{R}} E_{1}(k, \beta) .
$$

4. Asymptotic completeness of the wave operators for waveguides with perturbed constant twisting

Theorem 4. Let $\theta^{\prime}\left(x_{3}\right)=\beta-\varepsilon\left(x_{3}\right)$, where $\beta \in \mathbb{R}$ and $\varepsilon \in C^{1}(\mathbb{R}, \mathbb{R})$. Assume that there exists $C \in[0, \infty)$ such that

$$
|\varepsilon(x)|+\left|\varepsilon^{\prime}(x)\right| \leq C\left(1+x^{2}\right)^{-1}, \quad x \in \mathbb{R} .
$$

Then there exists a locally finite (hence, discrete) set $\mathcal{T} \subset \mathbb{R}$ such that:
(i) Any compact subinterval of $\mathbb{R} \backslash \mathcal{T}$ contains at most finitely many eigenvalues of $H_{\theta^{\prime}}$, each having a finite multiplicity;
(ii) The singular continuous spectrum of $H_{\theta^{\prime}}$ is empty.

Corollary 5. Under the assumptions of Theorem 4 the wave operators for the operator pair $\left(H_{\theta^{\prime}}, H_{\beta}\right)$ exist and are asymptotically complete.

Main ingredient of the proof of Theorem 4: Mourre estimates

More precisely, for any $E \in \mathbb{R} \backslash \mathcal{T}$ there exists $\delta>0$ such that the strict Mourre estimates

$$
\begin{gather*}
\mathbf{1}_{(E-\delta, E+\delta)}\left(H_{\beta}\right)\left[H_{\beta}, i A\right] \mathbf{1}_{(E-\delta, E+\delta)}\left(H_{\beta}\right) \geq \\
C \mathbf{1}_{(E-\delta, E+\delta)}\left(H_{\beta}\right) \tag{1}
\end{gather*}
$$

hold true with an appropriate conjugate operator A and a constant $C>0$. If, moreover, ε satisfies the assumptions of Theorem 4, then the non strict Mourre estimates

$$
\begin{gather*}
\mathbf{1}_{(E-\delta, E+\delta)}\left(H_{\theta^{\prime}}\right)\left[H_{\theta^{\prime}}, i A\right] \mathbf{1}_{(E-\delta, E+\delta)}\left(H_{\theta^{\prime}}\right) \geq \\
C^{\prime} \mathbf{1}_{(E-\delta, E+\delta)}\left(H_{\theta^{\prime}}\right)+K \tag{2}
\end{gather*}
$$

hold true with same A as in (1), a constant $C^{\prime}>0$, and a compact operator K.

Idea of the construction of the conjugate operator A :

We have

$$
A=\mathcal{F}^{*}\left(\mathbf{1}_{\omega} \otimes a\right) \mathcal{F}
$$

where

$$
a:=\frac{i}{2}\left(\gamma \frac{d}{d k}+\frac{d}{d k} \gamma\right)
$$

and $\gamma \in C_{0}^{\infty}(\mathbb{R} ; \mathbb{R})$ is an appropriate function.

4. Eigenvalue asymptotics for waveguides with perturbed periodic twisting

Assume that $\beta=\bar{\beta} \in C(\mathbb{T})$ where $\mathbb{T}:=\mathbb{R} / 2 \pi \mathbb{Z}$. Set $\mathbb{T}^{*}:=\mathbb{R} / \mathbb{Z}$. Introduce the unitary FloquetBloch operator $\Phi: L^{2}(\Omega) \rightarrow L^{2}\left(\omega \times \mathbb{T} \times \mathbb{T}^{*}\right)$,

$$
\begin{gathered}
(\Phi u)\left(x_{t}, x_{3}, k\right):= \\
\sum_{\ell \in \mathbb{Z}} e^{-i k\left(x_{3}+2 \pi \ell\right)} u\left(x_{t}, x_{3}+2 \pi \ell\right)
\end{gathered}
$$

$x_{t} \in \omega, x_{3} \in \mathbb{T}, k \in \mathbb{T}^{*}$. Then

$$
\Phi H_{\beta} \Phi^{*}=\int_{\mathbb{T}^{*}}^{\oplus} h_{\beta}(k) d k
$$

where

$$
h_{\beta}(k):=-\Delta_{t}-\left(\beta \partial_{\varphi}+\partial_{3}+i k\right)^{2}, \quad k \in \mathbb{T}^{*},
$$

is self-adjoint in $\mathrm{L}^{2}(\omega \times \mathbb{T})$. Let $\left\{E_{\ell}(k)\right\}_{\ell \in \mathbb{N}}$ be the non-decreasing sequence of the eigenvalues of $h_{\beta}(k), k \in \mathbb{T}^{*}$. We have

$$
\sigma\left(H_{\beta}\right)=\bigcup_{\ell \in \mathbb{N}} E_{\ell}\left(\mathbb{T}^{*}\right)
$$

Set

$$
\mathcal{E}_{0}^{+}:=\inf \sigma\left(H_{\beta}\right)=\min _{k \in \mathbb{T}^{*}} E_{1}(k) .
$$

In $\sigma\left(H_{\beta}\right)$ there always exists the semi-bounded gap $\left(-\infty, \mathcal{E}_{0}^{+}\right)$. It is possible also to have bounded open gaps $\left(\mathcal{E}_{j}^{-}, \mathcal{E}_{j}^{+}\right), j=1, \ldots, J$. One way to see this, is to consider thin twisted waveguides. Namely, for $\ell>0$ set

$$
\omega_{\ell}:=\left\{x_{t} \in \mathbb{R}^{2} \mid \ell^{-1} x_{t} \in \omega\right\}, \quad \Omega_{\ell}:=\omega_{\ell} \times \mathbb{R} .
$$

Let $H_{\beta, \ell}$ be the Dirichlet Hamiltonian in a waveguide with $\theta^{\prime}=\beta$, self-adjoint in $L^{2}\left(\Omega_{\ell}\right)$. Then, under appropriate conditions, the operator $H_{\beta, \ell}-\ell^{-2} \lambda_{1}$ converges in a suitable sense as $\ell \downarrow 0$, to the operator

$$
-\frac{d^{2}}{d x^{2}}+\left\|\partial_{\varphi} \Psi_{1}\right\|_{L^{2}(\omega)}^{2} \beta(x)^{2}, \quad x \in \mathbb{R}
$$

self-adjoint in $L^{2}(\mathbb{R})$. Here, λ_{1} is the first eigenvalue of the Dirichlet Lalpacian $-\Delta_{t}$, self-adjoint in $L^{2}(\omega)$, and Ψ_{1} is the corresponding eigenfunction, normalized in $L^{2}(\omega)$.

Then we have

$$
\mathbb{R} \backslash \sigma\left(H_{\beta}\right)=\bigcup_{j=0}^{J}\left(\mathcal{E}_{j}^{-}, \mathcal{E}_{j}^{+}\right)
$$

with $\mathcal{E}_{0}^{-}:=-\infty$. The value $\mathcal{E}_{j}^{-}, j \geq 1$, (resp, $\mathcal{E}_{j}^{+}, j \geq 0$) coincides with the maximal (resp., minimal) value of some band function E_{ℓ}.

Definition: The edge point $\mathcal{E}_{j}^{ \pm}$is regular if:
(i) There exists a unique band function $E_{\ell(j)}^{ \pm}$ which takes the value $\mathcal{E}_{j}^{ \pm}$.
(ii) The function $E_{\ell(j)}^{ \pm}$takes the value $\mathcal{E}_{j}^{ \pm}$at finitely many points $k_{j, m}^{ \pm}, m=1, \ldots, M_{j}^{ \pm}$. (iii) We have

$$
\mu_{j, m}^{ \pm}:= \pm \frac{1}{2} \frac{d^{2} E_{\ell(j)}^{ \pm}}{d k^{2}}\left(k_{j, m}^{ \pm}\right)>0, \quad m=1, \ldots, M_{j}^{ \pm} .
$$

If conditions (i) and (ii) hold true, then $E_{\ell(j)}^{ \pm}$ is analytic in a vicinity of each point $k_{j, m}^{ \pm}$, i.e. there exists a $\delta>0$ such that the intervals

$$
\mathcal{I}_{j, m}^{ \pm}=\left[k_{j, m}^{ \pm}-\delta, k_{j, m}^{ \pm}+\delta\right], \quad m=1, \ldots, M_{j}^{ \pm},
$$

are disjoint, and $E_{\ell(j)}^{ \pm}$is real-analytic on them.
Proposition 6. If $\beta \in C^{2}(\mathbb{T})$, the edge \mathcal{E}_{0}^{+}is regular, $M_{0}^{+}=1$, and $k_{0,1}^{+}=0$.

Introduce the eigenfunctions

$$
\psi_{j}^{ \pm}(\mathrm{x} ; k), \mathrm{x} \in \omega \times \mathbb{T}, k \in \mathcal{I}_{j}^{ \pm}:=\bigcup_{m=1}^{M_{j}^{ \pm}} \mathcal{I}_{j, m}^{ \pm},
$$

such that

$$
\begin{gathered}
h_{\beta}(k) \psi_{j}^{ \pm}(\cdot ; k)=E_{\ell(j)}^{ \pm} \psi_{j}^{ \pm}(\cdot ; k), \\
\int_{\omega} \int_{\mathbb{T}}\left|\psi_{j}^{ \pm}\left(x_{t}, x_{3} ; k\right)\right|^{2} d x_{3} d x_{t}=1, \quad k \in \mathcal{I}_{j}^{ \pm},
\end{gathered}
$$

and the mapping

$$
\mathcal{I}_{j}^{ \pm} \ni k \mapsto \psi_{j}^{ \pm}(\cdot ; k) \in D\left(H_{\beta}\right)
$$

is analytic.

Assume

$$
\beta \in C(\mathbb{T}), \quad \varepsilon \in C(\mathbb{R}), \quad \lim _{|x| \rightarrow \infty} \varepsilon(x)=0
$$

Then the operator $H_{\beta}^{-1}-H_{\beta-\varepsilon}^{-1}$ is compact, and $\sigma_{\mathrm{ess}}\left(H_{\beta}\right)=\sigma_{\mathrm{ess}}\left(H_{\beta-\varepsilon}\right)$. Therefore,

$$
\mathbb{R} \backslash \sigma_{\mathrm{ess}}\left(H_{\beta-\varepsilon}\right)=\bigcup_{j=0}^{J}\left(\mathcal{E}_{j}^{-}, \mathcal{E}_{j}^{+}\right) .
$$

Let $T=T^{*}$,

$$
N_{\mathcal{I}}(T):=\operatorname{rank} \mathbb{1}_{\mathcal{I}}(T)
$$

where $\mathbb{1}_{\mathcal{I}}(T)$ is the spectral projection of T corresponding to the interval $\mathcal{I} \subset \mathbb{R}$. Put

$$
\mathcal{N}_{0}^{+}(\lambda)=N_{\left(-\infty, \mathcal{E}_{0}^{+}-\lambda\right)}\left(H_{\beta-\varepsilon}\right), \quad \lambda>0 .
$$

Fix $\mathcal{E} \in\left(\mathcal{E}_{j}^{-}, \mathcal{E}_{j}^{+}\right), j \geq 1$, and set

$$
\begin{array}{ll}
\mathcal{N}_{j}^{-}(\lambda)=N_{\left(\mathcal{E}_{j}^{-}+\lambda, \mathcal{E}\right)}\left(H_{\beta-\varepsilon}\right), & \lambda \in\left(0, \mathcal{E}-\mathcal{E}_{j}^{-}\right), \\
\mathcal{N}_{j}^{+}(\lambda)=N_{\left(\mathcal{E}, \mathcal{E}_{j}^{+}-\lambda\right)}\left(H_{\beta-\varepsilon}\right), & \lambda \in\left(0, \mathcal{E}_{j}^{+}-\mathcal{E}\right) .
\end{array}
$$

Assume that the edge point $\mathcal{E}_{j}^{ \pm}$is regular. For $x_{3} \in \mathbb{T}$ and $m=1, \ldots, M_{j}^{ \pm}$, introduce the functions

$$
\begin{gathered}
\eta_{j, m}^{ \pm}\left(x_{3}\right):= \\
4 \pi \operatorname{Re} \int_{\omega} \overline{\partial_{\varphi} \psi_{j}^{ \pm}\left(x_{t}, x_{3} ; k_{j, m}^{ \pm}\right)} \\
\left(\beta\left(x_{3}\right) \partial_{\varphi}+\partial_{3}+i k_{j, m}^{ \pm}\right) \psi_{j}^{ \pm}\left(x_{t}, x_{3} ; k_{j, m}^{ \pm}\right) d x_{t},
\end{gathered}
$$

and their mean values

$$
\left\langle\eta_{j, m}^{ \pm}\right\rangle:=\frac{1}{2 \pi} \int_{\mathbb{T}} \eta_{j, m}^{ \pm}(x) d x
$$

For $n \in \mathbb{N}$ and $\alpha>0$ set

$$
\begin{gathered}
\mathcal{S}_{n, \alpha}(\mathbb{R}):=\left\{u=\bar{u} \in C^{n}(\mathbb{R}) \mid\right. \\
\left.\left|u^{(\ell)}(x)\right| \leq c_{\ell}(1+|x|)^{-\alpha-\ell}, x \in \mathbb{R}, \ell=0, \ldots, n\right\} \\
\mathcal{S}_{n, \alpha}^{+}(\mathbb{R}):=\left\{u \in \mathcal{S}_{n, \alpha}(\mathbb{R}) \mid\right.
\end{gathered}
$$

$\exists C>0, R>0$ such that $\left.u(x) \geq C|x|^{-\alpha},|x| \geq R\right\}$.

Informally, our two next theorems will say that

$$
\begin{gathered}
\mathcal{N}_{j}^{ \pm}(\lambda) \sim \\
\sum_{m=1}^{M_{j}^{ \pm}} N_{(-\infty,-\lambda)}\left(-\mu_{j, m}^{ \pm} \frac{d^{2}}{d x^{2}} \mp\left\langle\eta_{j, m}^{ \pm}\right\rangle \varepsilon(x)\right),
\end{gathered}
$$

as $\lambda \downarrow 0$. Hence, at that moment, the operator

$$
\begin{equation*}
\bigoplus_{m=1}^{M_{j}^{ \pm}}\left(-\mu_{j, m}^{ \pm} \frac{d^{2}}{d x^{2}} \mp\left\langle\eta_{j, m}^{ \pm}\right\rangle \varepsilon(x)\right) \tag{3}
\end{equation*}
$$

self-adjoint in $L^{2}(\mathbb{R})$, can be considered as the effective Hamiltonian which models the behaviour of the discrete spectrum of $H_{\beta-\varepsilon}$ near the regular edge point $\mathcal{E}_{j}^{ \pm}$of $\sigma\left(H_{\beta}\right)$.

Theorem 7. Let $\beta \in C^{4}(\mathbb{T})$, and $\left(\mathcal{E}_{j}^{-}, \mathcal{E}_{j}^{+}\right)$, $j \geq 0$, be an open gap in $\sigma\left(H_{\beta}\right)$. Assume that the edge point $\mathcal{E}_{j}^{ \pm}$is regular.
(i) Let $\alpha \in(0,2), \varepsilon \in \mathcal{S}_{4, \alpha}^{+}(\mathbb{R})$. If there exists at least one m such that $\pm\left\langle\eta_{j, m}^{ \pm}\right\rangle>0$, we have

$$
\mathcal{N}_{j}^{ \pm}(\lambda)=
$$

$\sum_{m=1}^{M_{j}^{ \pm}} \frac{1}{\pi \sqrt{\mu_{j, m}^{ \pm}}} \int_{\mathbb{R}}\left(\pm\left\langle\eta_{j, m}^{ \pm}\right\rangle \varepsilon(x)-\lambda\right)_{+}^{1 / 2} d x(1+o(1))$

$$
\asymp \lambda^{\frac{1}{2}-\frac{1}{\alpha}},
$$

as $\lambda \downarrow 0$. If, on the contrary, $\pm\left\langle\eta_{j, m}^{ \pm}\right\rangle<0$ for all m, then

$$
\begin{equation*}
\mathcal{N}_{j}^{ \pm}(\lambda)=O(1), \quad \lambda \downarrow 0 \tag{4}
\end{equation*}
$$

(ii) Let $\alpha \in(0,2), \pm\left\langle\eta_{j, m}^{ \pm}\right\rangle \leq 0$ for all m, and $\left\langle\eta_{j, m}^{ \pm}\right\rangle=0$ for some m. Suppose that $\varepsilon \in$ $\mathcal{S}_{4, \alpha}^{j,}(\mathbb{R})$. Then for each $\kappa>0$ we have

$$
\mathcal{N}_{j}(\lambda)=O\left(\lambda^{\left.\frac{1}{2}\left(1-\frac{1}{\alpha}\right)-\kappa\right)}\right), \quad \lambda \downarrow 0
$$

if $\alpha \in(0,1]$, while (4) holds true if $\alpha \in(1,2)$.
(iii) Let $\alpha=2$. Suppose that and there exists $L \in \mathbb{R}$ such that

$$
\lim _{|x| \rightarrow \infty} x^{2} \varepsilon(x)=L
$$

Then
$\lim _{\lambda \downarrow 0}|\ln \lambda|^{-1} \mathcal{N}_{j}^{ \pm}(\lambda)=\frac{1}{\pi} \sum_{m=1}^{M_{j}^{ \pm}}\left(\frac{ \pm\left\langle\eta_{j, m}^{ \pm}\right\rangle L}{\mu_{j, m}^{ \pm}}-\frac{1}{4}\right)_{+}^{1 / 2}$. If, moreover, $\pm 4\left\langle\eta_{j, m}^{ \pm}\right\rangle L<\mu_{j, m}^{ \pm}$for all m, then (4) holds true.
(iv) Let $\alpha>2$. Then (4) holds true again.

Idea of the proof of Theorem 7

An effective Hamiltonian, more informative than the one defined in (3), is the operator

$$
\bigoplus_{m=1}^{M_{j}^{ \pm}}\left(-\mu_{j, m}^{ \pm} \frac{d^{2}}{d x^{2}} \mp \eta_{j, m}^{ \pm}(x) \varepsilon(x)\right),
$$

which involves the periodic functions $\eta_{j, m}^{ \pm}$instead of their mean values $\left\langle\eta_{j, m}^{ \pm}\right\rangle$.

Basically, we have to deal with the asymptotic behaviour of the discrete spectrum of the operator

$$
\mathcal{H}_{\mathrm{eff}}:=-\frac{d^{2}}{d x^{2}}-\eta(x) \varepsilon(x), \quad x \in \mathbb{R},
$$

self-adjoint in $L^{2}(\mathbb{R})$. Here $\varepsilon \geq 0$ decays regularly at infinity, but η is a 2π-periodic function which generically is not constant, so that the decay of the product $\eta \varepsilon$ is not regular, In the following proposition we summarize the eigenvalue asymptotics for $\mathcal{H}_{\text {eff }}$.

Proposition 8. Let $\eta \in C^{4}(\mathbb{T}), \varepsilon \in \mathcal{S}_{4, \alpha}(\mathbb{R})$, $\alpha>0$.
(i) Let $\alpha \in(0,2), \varepsilon \in \mathcal{S}_{4, \alpha}^{+}(\mathbb{R})$. If $\langle\eta\rangle>0$, then $N_{(-\infty,-\lambda)}\left(\mathcal{H}_{\text {eff }}\right)=$

$$
\frac{1}{\pi} \int_{\mathbb{R}}(\langle\eta\rangle \varepsilon(x)-\lambda)_{+}^{1 / 2} d x(1+o(1)) \asymp \lambda^{\frac{1}{2}-\frac{1}{\alpha}}
$$

as $\lambda \downarrow 0$. If, on the contrary, $\langle\eta\rangle<0$, then

$$
\begin{equation*}
N_{(-\infty,-\lambda)}\left(\mathcal{H}_{\mathrm{eff}}\right)=O(1), \quad \lambda \downarrow 0, \tag{5}
\end{equation*}
$$

(ii) Let $\alpha \in(0,2),\langle\eta\rangle=0$. Then,
$N_{(-\infty, \lambda)}\left(\mathcal{H}_{\text {eff }}\right)=O\left(\lambda^{\left.\frac{1}{2}\left(1-\frac{1}{\alpha}\right)-\kappa\right)}\right), \lambda \downarrow 0, \kappa>0$, if $\alpha \in(0,1]$, while (5) holds true if $\alpha \in(1,2)$.
(iii) Let $\alpha=2$. Assume that

$$
\lim _{|x| \rightarrow \infty} x^{2} \varepsilon(x)=L \in \mathbb{R} .
$$

Then,
$\lim _{\lambda \downarrow 0}|\ln \lambda|^{-1} N_{(-\infty,-\lambda)}\left(\mathcal{H}_{\text {eff }}\right)=\frac{1}{\pi}\left(\langle\eta\rangle L-\frac{1}{4}\right)_{+}^{1 / 2}$. If, moreover, $4\langle\eta\rangle L<1$, then (5) holds true. (iv) Let $\alpha>2$. Then (4) holds true again.

