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1. The Dirichlet Laplacian in a Twisted

Waveguide

Let

• ω ⊂ R2 be a bounded domain with C2-

boundary, such that 0 ∈ ω;

• Ω := ω × R;

• θ ∈ C1(R;R), θ′ ∈ L∞(R).

Introduce the twisted waveguide

Ωθ := {rθ(x3)x, x ∈ Ω}

where

rθ(x3) :=

 cos θ(x3) sin θ(x3) 0
− sin θ(x3) cos θ(x3) 0

0 0 1

 .
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Define the Dirichlet Laplacian −∆D as the

self-adjoint operator generated in L2(Ωθ) by

the closed quadratic form

Q̃θ[f ] :=
∫
Ωθ

|∇f(x)|2 dx,

f ∈ D(Q̃θ) := H1
0(Ωθ).

Let U : L2(Ωθ) → L2(Ω) be the unitary oper-

ator given by

(Uf)(x) = f(rθ(x3)x), x ∈ Ω, f ∈ L2(Ωθ).

Set

∇t := (∂1, ∂2), ∆t := ∂21 + ∂22,

∂φ := x1∂2 − x2∂1.
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Define the operator Hθ′ as the self-adjoint

operator generated in L2(Ω) by the closed

quadratic form

Qθ′[f ] :=
∫
Ω
(|∇tf |2 + |θ′(x3)∂φf + ∂3f |2)dx,

f ∈ D(Qθ′) := H1
0(Ω).

Evidently, Hθ′ is strictly positive, and hence

invertible, in L2(Ω).

5



Proposition 1.Assume that ω ⊂ R2 is a bounded

domain with boundary ∂ω ∈ C2, and θ ∈
C2(R;R) with θ′, θ′′ ∈ L∞(R). Then the do-

main of the operator Hθ′ coincides with H2(Ω)∩
H1
0(Ω).

The operator Hg acts on its domain as

Hθ′ = −∆t − (θ′(x3)∂φ+ ∂3)
2.

Since

Qθ′[f ] = Q̃θ[U−1f ], f ∈ H1
0(Ω),

and U maps bijectively H1
0(Ωθ) onto H1

0(Ω),

we have

Hθ′ = U(−∆D)U−1,

i.e. −∆D is unitarily equivalent to Hθ′.
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2. Existence and completeness of
the wave operators

Theorem 2.Assume that ω ⊂ R2 is a bounded

domain with C2-boundary. Let θj ∈ C2(R;R)
with θ′j, θ

′′
j ∈ L∞(R), j = 1,2. Suppose that

there exist α > 1 and C ∈ [0,∞) such that

|θ′1(x)− θ′2(x)| ≤ C(1 + |x|)−α, x ∈ R.

Then the operator H−2
θ′1

−H−2
θ′2

is trace class.

Corollary 3. Under the assumptions of The-

orem 2 the wave operators

s− lim
t→∓∞

exp (itHθ′1
) exp(−itHθ′2)Pac(Hθ′2)

for the operator pair (Hθ′1
, Hθ′2

) exist and are

complete. Therefore, the absolutely continu-

ous parts of Hθ′1
and Hθ′2

are unitarily equiv-

alent, and, in particular,

σac(Hθ′1
) = σac(Hθ′2

).
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3. Constant twisting

Assume that there exists a β ∈ R such that

θ′(x3) = β for every x3 ∈ R.

Let F be the partial Fourier transform with

respect to x3, i.e.

(Fu)(xt, k) :=
1√
2π

∫
R
e−ikx3u(xt, x3)dx3

for u ∈ L2(ω;S(R)). We have

FHβF∗ =
∫ ⊕

R
hβ(k)dk

where

hβ(k) := −∆t − (β∂φ+ ik)2, k ∈ R.
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For each k ∈ R the spectrum of the operator
hβ(k) is discrete. Let{

Ej(k)
}∞
j=1

=
{
Ej(k, β)

}∞
j=1

be the non-decreasing sequence of its eigen-
values.

The functions

R ∋ k 7→ Ej(k) ∈ (0,∞), j ∈ N,

are continuous piecewise analytic functions.

Moreover,

Ej(k) = k2(1 + o(1)), k → ±∞.

Hence,

σ(Hβ) = σac(Hβ) = ∪j∈NEj(R) = [E+
0 ,∞)

with

E+
0 := min

k∈R
E1(k, β).
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4. Asymptotic completeness of the
wave operators for waveguides with
perturbed constant twisting

Theorem 4. Let θ′(x3) = β − ε(x3), where

β ∈ R and ε ∈ C1(R,R). Assume that there

exists C ∈ [0,∞) such that

|ε(x)|+ |ε′(x)| ≤ C(1 + x2)−1, x ∈ R.

Then there exists a locally finite (hence, dis-

crete) set T ⊂ R such that:

(i) Any compact subinterval of R\T contains

at most finitely many eigenvalues of Hθ′, each

having a finite multiplicity;

(ii) The singular continuous spectrum of Hθ′

is empty.

Corollary 5. Under the assumptions of The-

orem 4 the wave operators for the opera-

tor pair (Hθ′, Hβ) exist and are asymptotically

complete.
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Main ingredient of the proof of Theorem 4:

Mourre estimates

More precisely, for any E ∈ R \ T there exists

δ > 0 such that the strict Mourre estimates

1(E−δ,E+δ)(Hβ)[Hβ, iA]1(E−δ,E+δ)(Hβ) ≥

C1(E−δ,E+δ)(Hβ) (1)

hold true with an appropriate conjugate oper-

ator A and a constant C > 0. If, moreover, ε

satisfies the assumptions of Theorem 4, then

the non strict Mourre estimates

1(E−δ,E+δ)(Hθ′)[Hθ′, iA]1(E−δ,E+δ)(Hθ′) ≥

C′1(E−δ,E+δ)(Hθ′) +K (2)

hold true with same A as in (1), a constant

C′ > 0, and a compact operator K.
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Idea of the construction of the conjugate op-

erator A:

We have

A = F∗ (1ω ⊗ a)F

where

a :=
i

2

(
γ
d

dk
+

d

dk
γ

)
,

and γ ∈ C∞
0 (R;R) is an appropriate function.
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4. Eigenvalue asymptotics for
waveguides with perturbed periodic
twisting

Assume that β = β ∈ C(T) where T := R/2πZ.
Set T∗ := R/Z. Introduce the unitary Floquet-
Bloch operator Φ : L2(Ω) → L2(ω × T× T∗),

(Φu)(xt, x3, k) :=∑
ℓ∈Z

e−ik(x3+2πℓ)u(xt, x3 +2πℓ),

xt ∈ ω, x3 ∈ T, k ∈ T∗. Then

ΦHβΦ
∗ =

∫ ⊕

T∗
hβ(k)dk

where

hβ(k) := −∆t − (β∂φ+ ∂3 + ik)2, k ∈ T∗,

is self-adjoint in L2(ω×T). Let {Eℓ(k)}ℓ∈N be
the non-decreasing sequence of the eigenval-
ues of hβ(k), k ∈ T∗. We have

σ(Hβ) =
∪
ℓ∈N

Eℓ(T∗).
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Set

E+
0 := inf σ(Hβ) = min

k∈T∗
E1(k).

In σ(Hβ) there always exists the semi-bounded

gap (−∞, E+
0 ). It is possible also to have

bounded open gaps (E−
j , E

+
j ), j = 1, . . . , J.

One way to see this, is to consider thin twisted

waveguides. Namely, for ℓ > 0 set

ωℓ := {xt ∈ R2 | ℓ−1xt ∈ ω}, Ωℓ := ωℓ × R.

Let Hβ,ℓ be the Dirichlet Hamiltonian in a

waveguide with θ′ = β, self-adjoint in L2(Ωℓ).

Then, under appropriate conditions, the op-

erator Hβ,ℓ − ℓ−2λ1 converges in a suitable

sense as ℓ ↓ 0, to the operator

−
d2

dx2
+ ∥∂φΨ1∥2L2(ω)β(x)

2, x ∈ R,

self-adjoint in L2(R). Here, λ1 is the first

eigenvalue of the Dirichlet Lalpacian −∆t,

self-adjoint in L2(ω), and Ψ1 is the corre-

sponding eigenfunction, normalized in L2(ω).
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Then we have

R \ σ(Hβ) =
J∪

j=0

(
E−
j , E

+
j

)
with E−

0 := −∞. The value E−
j , j ≥ 1, (resp,

E+
j , j ≥ 0) coincides with the maximal (resp.,

minimal) value of some band function Eℓ.

Definition: The edge point E±
j is regular if:

(i) There exists a unique band function E±
ℓ(j)

which takes the value E±
j .

(ii) The function E±
ℓ(j) takes the value E±

j at

finitely many points k±j,m, m = 1, . . . ,M±
j .

(iii) We have

µ±j,m := ±
1

2

d2E±
ℓ(j)

dk2
(k±j,m) > 0, m = 1, . . . ,M±

j .
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If conditions (i) and (ii) hold true, then E±
ℓ(j)

is analytic in a vicinity of each point k±j,m, i.e.
there exists a δ > 0 such that the intervals

I±
j,m =

[
k±j,m − δ, k±j,m+ δ

]
, m = 1, . . . ,M±

j ,

are disjoint, and E±
ℓ(j) is real-analytic on them.

Proposition 6. If β ∈ C2(T), the edge E+
0 is

regular, M+
0 = 1, and k+0,1 = 0.

Introduce the eigenfunctions

ψ±
j (x; k),x ∈ ω × T, k ∈ I±

j :=

M±
j∪

m=1

I±
j,m,

such that

hβ(k)ψ
±
j (·; k) = E±

ℓ(j)ψ
±
j (·; k),∫

ω

∫
T

∣∣∣ψ±
j (xt, x3; k)

∣∣∣2 dx3dxt = 1, k ∈ I±
j ,

and the mapping

I±
j ∋ k 7→ ψ±

j (·; k) ∈ D(Hβ)

is analytic.
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Assume

β ∈ C(T), ε ∈ C(R), lim
|x|→∞

ε(x) = 0.

Then the operator H−1
β − H−1

β−ε is compact,

and σess(Hβ) = σess(Hβ−ε). Therefore,

R \ σess(Hβ−ε) =
J∪

j=0

(
E−
j , E

+
j

)
.

Let T = T ∗,

NI(T ) := rank1I(T )

where 1I(T ) is the spectral projection of T

corresponding to the interval I ⊂ R. Put

N+
0 (λ) = N

(−∞,E+
0 −λ)(Hβ−ε), λ > 0.

Fix E ∈
(
E−
j , E

+
j

)
, j ≥ 1, and set

N−
j (λ) = N(E−

j +λ,E)(Hβ−ε), λ ∈ (0, E − E−
j ),

N+
j (λ) = N

(E,E+
j −λ)(Hβ−ε), λ ∈ (0, E+

j − E).
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Assume that the edge point E±
j is regular.

For x3 ∈ T and m = 1, . . . ,M±
j , introduce the

functions

η±j,m(x3) :=

4πRe
∫
ω
∂φψ

±
j (xt, x3; k

±
j,m)

(
β(x3)∂φ+ ∂3 + ik±j,m

)
ψ±
j (xt, x3; k

±
j,m) dxt,

and their mean values

⟨η±j,m⟩ :=
1

2π

∫
T
η±j,m(x)dx.

For n ∈ N and α > 0 set

Sn,α(R) := {u = u ∈ Cn(R) |

|u(ℓ)(x)| ≤ cℓ(1 + |x|)−α−ℓ, x ∈ R, ℓ = 0, . . . , n
}
.

S+
n,α(R) := {u ∈ Sn,α(R) |

∃C > 0, R > 0 such thatu(x) ≥ C|x|−α, |x| ≥ R}.

18



Informally, our two next theorems will say

that

N±
j (λ) ∼

M±
j∑

m=1

N(−∞,−λ)

(
−µ±j,m

d2

dx2
∓ ⟨η±j,m⟩ε(x)

)
,

as λ ↓ 0. Hence, at that moment, the opera-

tor

M±
j⊕

m=1

(
−µ±j,m

d2

dx2
∓ ⟨η±j,m⟩ε(x)

)
(3)

self-adjoint in L2(R), can be considered as

the effective Hamiltonian which models the

behaviour of the discrete spectrum of Hβ−ε
near the regular edge point E±

j of σ(Hβ).
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Theorem 7. Let β ∈ C4(T), and
(
E−
j , E

+
j

)
,

j ≥ 0, be an open gap in σ(Hβ). Assume
that the edge point E±

j is regular.

(i) Let α ∈ (0,2), ε ∈ S+
4,α(R). If there exists

at least one m such that ±⟨η±j,m⟩ > 0, we have

N±
j (λ) =

M±
j∑

m=1

1

π
√
µ±j,m

∫
R

(
±⟨η±j,m⟩ε(x)− λ

)1/2
+

dx (1+o(1))

≍ λ
1
2−

1
α,

as λ ↓ 0. If, on the contrary, ±⟨η±j,m⟩ < 0 for
all m, then

N±
j (λ) = O(1), λ ↓ 0. (4)

(ii) Let α ∈ (0,2), ±⟨η±j,m⟩ ≤ 0 for all m, and

⟨η±j,m⟩ = 0 for some m. Suppose that ε ∈
S4,α(R). Then for each κ > 0 we have

Nj(λ) = O(λ
1
2(1−

1
α)−κ)), λ ↓ 0,

if α ∈ (0,1], while (4) holds true if α ∈ (1,2).
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(iii) Let α = 2. Suppose that and there exists

L ∈ R such that

lim
|x|→∞

x2ε(x) = L.

Then

lim
λ↓0

| lnλ|−1N±
j (λ) =

1

π

M±
j∑

m=1

±⟨η±j,m⟩L
µ±j,m

−
1

4

1/2

+

.

If, moreover, ±4⟨η±j,m⟩L < µ±j,m for all m, then

(4) holds true.

(iv) Let α > 2. Then (4) holds true again.
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Idea of the proof of Theorem 7

An effective Hamiltonian, more informative
than the one defined in (3), is the operator

M±
j⊕

m=1

(
−µ±j,m

d2

dx2
∓ η±j,m(x)ε(x)

)
,

which involves the periodic functions η±j,m in-

stead of their mean values ⟨η±j,m⟩.

Basically, we have to deal with the asymp-
totic behaviour of the discrete spectrum of
the operator

Heff := −
d2

dx2
− η(x)ε(x), x ∈ R,

self-adjoint in L2(R). Here ε ≥ 0 decays reg-
ularly at infinity, but η is a 2π-periodic func-
tion which generically is not constant, so that
the decay of the product ηε is not regular, In
the following proposition we summarize the
eigenvalue asymptotics for Heff.

22



Proposition 8. Let η ∈ C4(T), ε ∈ S4,α(R),
α > 0.
(i) Let α ∈ (0,2), ε ∈ S+

4,α(R). If ⟨η⟩ > 0, then

N(−∞,−λ)(Heff) =

1

π

∫
R
(⟨η⟩ε(x)− λ)

1/2
+ dx (1 + o(1)) ≍ λ

1
2−

1
α

as λ ↓ 0. If, on the contrary, ⟨η⟩ < 0, then

N(−∞,−λ)(Heff) = O(1), λ ↓ 0, (5)

(ii) Let α ∈ (0,2), ⟨η⟩ = 0. Then,

N(−∞,λ)(Heff) = O(λ
1
2(1−

1
α)−κ)), λ ↓ 0, κ > 0,

if α ∈ (0,1], while (5) holds true if α ∈ (1,2).
(iii) Let α = 2. Assume that

lim
|x|→∞

x2ε(x) = L ∈ R.

Then,

lim
λ↓0

| lnλ|−1N(−∞,−λ)(Heff) =
1

π

(
⟨η⟩L−

1

4

)1/2
+

.

If, moreover, 4⟨η⟩L < 1, then (5) holds true.
(iv) Let α > 2. Then (4) holds true again.
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