Spectral and Scattering Properties of Twisted Waveguides

Spectral Days, CIRM, Luminy

June 10, 2014

Based on the following works:

- Ph. Briet, H. Kovarik, G. Raikov, E. Soccorsi, *Eigenvalue asymptotics in a twisted waveguide*, Commun. P.D.E., **34** (2009), 818–836.
- Ph. Briet, H. Kovarik, G. Raikov, Scattering in twisted waveguides, J. Funct. Anal. 266 (2014), 1 – 35.
- G. Raikov, Spectral asymptotics for waveguides with perturbed periodic twisting, Preprint, 2014.

1. The Dirichlet Laplacian in a Twisted Waveguide

Let

• $\omega \subset \mathbb{R}^2$ be a bounded domain with C^2 -boundary, such that $0 \in \omega$;

•
$$\Omega := \omega \times \mathbb{R};$$

• $\theta \in C^1(\mathbb{R};\mathbb{R}), \, \theta' \in L^\infty(\mathbb{R}).$

Introduce the twisted waveguide

$$\Omega_{\theta} := \{ r_{\theta}(x_3) \mathbf{x}, \ \mathbf{x} \in \Omega \}$$

where

$$r_{\theta}(x_3) := \begin{pmatrix} \cos \theta(x_3) & \sin \theta(x_3) & 0\\ -\sin \theta(x_3) & \cos \theta(x_3) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Define the Dirichlet Laplacian $-\Delta^D$ as the self-adjoint operator generated in $L^2(\Omega_{\theta})$ by the closed quadratic form

$$\begin{split} \tilde{\mathcal{Q}}_{\theta}[f] &:= \int_{\Omega_{\theta}} |\nabla f(\mathbf{x})|^2 \, d\mathbf{x}, \\ f &\in \mathsf{D}(\tilde{\mathcal{Q}}_{\theta}) := \mathsf{H}_0^1(\Omega_{\theta}). \end{split}$$

Let $\mathcal{U} : L^2(\Omega_{\theta}) \to L^2(\Omega)$ be the unitary operator given by

$$(\mathcal{U}f)(\mathbf{x}) = f(r_{\theta}(x_3)\mathbf{x}), \mathbf{x} \in \Omega, f \in L^2(\Omega_{\theta}).$$

Set

$$\nabla_t := (\partial_1, \partial_2), \quad \Delta_t := \partial_1^2 + \partial_2^2,$$
$$\partial_{\varphi} := x_1 \partial_2 - x_2 \partial_1.$$

Define the operator $H_{\theta'}$ as the self-adjoint operator generated in $L^2(\Omega)$ by the closed quadratic form

$$\mathcal{Q}_{\theta'}[f] := \int_{\Omega} (|\nabla_t f|^2 + |\theta'(x_3)\partial_{\varphi} f + \partial_3 f|^2) d\mathbf{x},$$
$$f \in D(\mathcal{Q}_{\theta'}) := \mathsf{H}_0^1(\Omega).$$

Evidently, $H_{\theta'}$ is strictly positive, and hence invertible, in $L^2(\Omega)$.

Proposition 1. Assume that $\omega \subset \mathbb{R}^2$ is a bounded domain with boundary $\partial \omega \in C^2$, and $\theta \in C^2(\mathbb{R};\mathbb{R})$ with $\theta', \theta'' \in L^{\infty}(\mathbb{R})$. Then the domain of the operator $H_{\theta'}$ coincides with $H^2(\Omega) \cap H^1_0(\Omega)$.

The operator H_g acts on its domain as

$$H_{\theta'} = -\Delta_t - (\theta'(x_3)\partial_{\varphi} + \partial_3)^2.$$

Since

$$\mathcal{Q}_{\theta'}[f] = \tilde{\mathcal{Q}}_{\theta}[\mathcal{U}^{-1}f], \quad f \in \mathsf{H}^1_0(\Omega),$$

and \mathcal{U} maps bijectively $H_0^1(\Omega_{\theta})$ onto $H_0^1(\Omega)$, we have

$$H_{\theta'} = \mathcal{U}(-\Delta^D)\mathcal{U}^{-1},$$

i.e. $-\Delta^D$ is unitarily equivalent to $H_{\theta'}$.

2. Existence and completeness of the wave operators

Theorem 2. Assume that $\omega \subset \mathbb{R}^2$ is a bounded domain with C^2 -boundary. Let $\theta_j \in C^2(\mathbb{R};\mathbb{R})$ with $\theta'_j, \theta''_j \in L^{\infty}(\mathbb{R}), \ j = 1, 2$. Suppose that there exist $\alpha > 1$ and $C \in [0, \infty)$ such that

 $|\theta'_1(x) - \theta'_2(x)| \le C(1+|x|)^{-\alpha}, \quad x \in \mathbb{R}.$ Then the operator $H_{\theta'_1}^{-2} - H_{\theta'_2}^{-2}$ is trace class.

Corollary 3. Under the assumptions of Theorem 2 the wave operators

 $s - \lim_{t \to \mp \infty} \exp(itH_{\theta'_1}) \exp(-itH_{\theta'_2}) P_{ac}(H_{\theta'_2})$

for the operator pair $(H_{\theta'_1}, H_{\theta'_2})$ exist and are complete. Therefore, the absolutely continuous parts of $H_{\theta'_1}$ and $H_{\theta'_2}$ are unitarily equivalent, and, in particular,

$$\sigma_{\mathrm{ac}}(H_{\theta_1'}) = \sigma_{\mathrm{ac}}(H_{\theta_2'}).$$

3. Constant twisting

Assume that there exists a $\beta \in \mathbb{R}$ such that $\theta'(x_3) = \beta$ for every $x_3 \in \mathbb{R}$.

Let \mathcal{F} be the partial Fourier transform with respect to x_3 , i.e.

$$(\mathcal{F}u)(x_t,k) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ikx_3} u(x_t,x_3) dx_3$$

for $u \in L^2(\omega; \mathcal{S}(\mathbb{R}))$. We have

$$\mathcal{F}H_{\beta}\mathcal{F}^* = \int_{\mathbb{R}}^{\oplus} h_{\beta}(k) dk$$

where

$$h_{\beta}(k) := -\Delta_t - (\beta \partial_{\varphi} + ik)^2, \quad k \in \mathbb{R}.$$

For each $k \in \mathbb{R}$ the spectrum of the operator $h_{\beta}(k)$ is discrete. Let

$$\left\{E_j(k)\right\}_{j=1}^{\infty} = \left\{E_j(k,\beta)\right\}_{j=1}^{\infty}$$

be the non-decreasing sequence of its eigenvalues.

The functions

$$\mathbb{R}
i k\mapsto E_j(k)\in (0,\infty), \quad j\in\mathbb{N},$$

are continuous piecewise analytic functions.

Moreover,

$$E_j(k) = k^2(1 + o(1)), \quad k \to \pm \infty.$$

Hence,

$$\sigma(H_{\beta}) = \sigma_{ac}(H_{\beta}) = \cup_{j \in \mathbb{N}} E_j(\mathbb{R}) = [\mathcal{E}_0^+, \infty)$$
 with

$$\mathcal{E}_0^+ := \min_{k \in \mathbb{R}} E_1(k,\beta).$$

4. Asymptotic completeness of the wave operators for waveguides with perturbed constant twisting

Theorem 4. Let $\theta'(x_3) = \beta - \varepsilon(x_3)$, where $\beta \in \mathbb{R}$ and $\varepsilon \in C^1(\mathbb{R}, \mathbb{R})$. Assume that there exists $C \in [0, \infty)$ such that

 $|\varepsilon(x)| + |\varepsilon'(x)| \le C(1+x^2)^{-1}, \quad x \in \mathbb{R}.$

Then there exists a locally finite (hence, discrete) set $\mathcal{T} \subset \mathbb{R}$ such that:

(i) Any compact subinterval of $\mathbb{R} \setminus \mathcal{T}$ contains at most finitely many eigenvalues of $H_{\theta'}$, each having a finite multiplicity;

(ii) The singular continuous spectrum of $H_{\theta'}$ is empty.

Corollary 5. Under the assumptions of Theorem 4 the wave operators for the operator pair $(H_{\theta'}, H_{\beta})$ exist and are asymptotically complete.

Main ingredient of the proof of Theorem 4: Mourre estimates

More precisely, for any $E \in \mathbb{R} \setminus \mathcal{T}$ there exists $\delta > 0$ such that the strict Mourre estimates

$$1_{(E-\delta,E+\delta)}(H_{\beta})[H_{\beta},iA]1_{(E-\delta,E+\delta)}(H_{\beta}) \ge C1_{(E-\delta,E+\delta)}(H_{\beta})$$
(1)

hold true with an appropriate conjugate operator A and a constant C > 0. If, moreover, ε satisfies the assumptions of Theorem 4, then the non strict Mourre estimates

$$1_{(E-\delta,E+\delta)}(H_{\theta'})[H_{\theta'},iA]1_{(E-\delta,E+\delta)}(H_{\theta'}) \ge C'1_{(E-\delta,E+\delta)}(H_{\theta'}) + K$$
(2)

hold true with same A as in (1), a constant C' > 0, and a compact operator K.

Idea of the construction of the conjugate operator A:

We have

$$A = \mathcal{F}^* \left(\mathbf{1}_\omega \otimes a \right) \mathcal{F}$$

where

$$a := \frac{i}{2} \left(\gamma \frac{d}{dk} + \frac{d}{dk} \gamma \right),$$

and $\gamma \in C_0^{\infty}(\mathbb{R};\mathbb{R})$ is an appropriate function.

4. Eigenvalue asymptotics for waveguides with perturbed periodic twisting

Assume that $\beta = \overline{\beta} \in C(\mathbb{T})$ where $\mathbb{T} := \mathbb{R}/2\pi\mathbb{Z}$. Set $\mathbb{T}^* := \mathbb{R}/\mathbb{Z}$. Introduce the unitary Floquet-Bloch operator $\Phi : L^2(\Omega) \to L^2(\omega \times \mathbb{T} \times \mathbb{T}^*)$,

$$(\Phi u)(x_t, x_3, k) :=$$

$$\sum_{\ell \in \mathbb{Z}} e^{-ik(x_3 + 2\pi\ell)} u(x_t, x_3 + 2\pi\ell),$$

 $x_t \in \omega$, $x_3 \in \mathbb{T}$, $k \in \mathbb{T}^*$. Then

$$\Phi H_{\beta} \Phi^* = \int_{\mathbb{T}^*}^{\oplus} h_{\beta}(k) dk$$

where

$$h_{\beta}(k) := -\Delta_t - (\beta \partial_{\varphi} + \partial_3 + ik)^2, \quad k \in \mathbb{T}^*,$$

is self-adjoint in $L^2(\omega \times \mathbb{T})$. Let $\{E_{\ell}(k)\}_{\ell \in \mathbb{N}}$ be the non-decreasing sequence of the eigenvalues of $h_{\beta}(k)$, $k \in \mathbb{T}^*$. We have

$$\sigma(H_{\beta}) = \bigcup_{\ell \in \mathbb{N}} E_{\ell}(\mathbb{T}^*).$$

Set

$$\mathcal{E}_0^+ := \inf \sigma(H_\beta) = \min_{k \in \mathbb{T}^*} E_1(k).$$

In $\sigma(H_{\beta})$ there always exists the semi-bounded gap $(-\infty, \mathcal{E}_0^+)$. It is possible also to have bounded open gaps $(\mathcal{E}_j^-, \mathcal{E}_j^+)$, $j = 1, \ldots, J$. One way to see this, is to consider thin twisted waveguides. Namely, for $\ell > 0$ set

$$\omega_{\ell} := \{ x_t \in \mathbb{R}^2 \, | \, \ell^{-1} x_t \in \omega \}, \quad \Omega_{\ell} := \omega_{\ell} \times \mathbb{R}.$$

Let $H_{\beta,\ell}$ be the Dirichlet Hamiltonian in a waveguide with $\theta' = \beta$, self-adjoint in $L^2(\Omega_{\ell})$. Then, under appropriate conditions, the operator $H_{\beta,\ell} - \ell^{-2}\lambda_1$ converges in a suitable sense as $\ell \downarrow 0$, to the operator

$$-\frac{d^2}{dx^2} + \|\partial_{\varphi}\Psi_1\|_{\mathsf{L}^2(\omega)}^2 \beta(x)^2, \quad x \in \mathbb{R},$$

self-adjoint in $L^2(\mathbb{R})$. Here, λ_1 is the first eigenvalue of the Dirichlet Lalpacian $-\Delta_t$, self-adjoint in $L^2(\omega)$, and Ψ_1 is the corresponding eigenfunction, normalized in $L^2(\omega)$. Then we have

$$\mathbb{R} \setminus \sigma(H_{\beta}) = \bigcup_{j=0}^{J} \left(\mathcal{E}_{j}^{-}, \mathcal{E}_{j}^{+} \right)$$

with $\mathcal{E}_0^- := -\infty$. The value \mathcal{E}_j^- , $j \ge 1$, (resp, \mathcal{E}_j^+ , $j \ge 0$) coincides with the maximal (resp., minimal) value of some band function E_ℓ .

Definition: The edge point \mathcal{E}_{j}^{\pm} is regular if: (i) There exists a unique band function $E_{\ell(j)}^{\pm}$ which takes the value \mathcal{E}_{j}^{\pm} . (ii) The function $E_{\ell(j)}^{\pm}$ takes the value \mathcal{E}_{j}^{\pm} at finitely many points $k_{j,m}^{\pm}$, $m = 1, \ldots, M_{j}^{\pm}$. (iii) We have

$$\mu_{j,m}^{\pm} := \pm \frac{1}{2} \frac{d^2 E_{\ell(j)}^{\pm}}{dk^2} (k_{j,m}^{\pm}) > 0, \quad m = 1, \dots, M_j^{\pm}.$$

If conditions (i) and (ii) hold true, then $E_{\ell(j)}^{\pm}$ is analytic in a vicinity of each point $k_{j,m}^{\pm}$, i.e. there exists a $\delta > 0$ such that the intervals

$$\mathcal{I}_{j,m}^{\pm} = \left[k_{j,m}^{\pm} - \delta, k_{j,m}^{\pm} + \delta\right], \quad m = 1, \dots, M_j^{\pm},$$

are disjoint, and $E_{\ell(j)}^{\pm}$ is real-analytic on them.

Proposition 6. If $\beta \in C^2(\mathbb{T})$, the edge \mathcal{E}_0^+ is regular, $M_0^+ = 1$, and $k_{0,1}^+ = 0$.

Introduce the eigenfunctions

$$\psi_j^{\pm}(\mathbf{x};k), \mathbf{x} \in \omega \times \mathbb{T}, \ k \in \mathcal{I}_j^{\pm} := \bigcup_{m=1}^{M_j^{\pm}} \mathcal{I}_{j,m}^{\pm},$$

such that

$$h_{\beta}(k)\psi_{j}^{\pm}(\cdot;k) = E_{\ell(j)}^{\pm}\psi_{j}^{\pm}(\cdot;k),$$

 $\int_{\omega} \int_{\mathbb{T}} \left| \psi_j^{\pm}(x_t, x_3; k) \right|^2 dx_3 dx_t = 1, \quad k \in \mathcal{I}_j^{\pm},$

and the mapping

$$\mathcal{I}_{j}^{\pm} \ni k \mapsto \psi_{j}^{\pm}(\cdot; k) \in D(H_{\beta})$$

is analytic.

Assume

$$\beta \in C(\mathbb{T}), \quad \varepsilon \in C(\mathbb{R}), \quad \lim_{|x| \to \infty} \varepsilon(x) = 0.$$

Then the operator $H_{\beta}^{-1} - H_{\beta-\varepsilon}^{-1}$ is compact, and $\sigma_{\text{ess}}(H_{\beta}) = \sigma_{\text{ess}}(H_{\beta-\varepsilon})$. Therefore,

$$\mathbb{R} \setminus \sigma_{\mathrm{ess}}(H_{\beta-\varepsilon}) = \bigcup_{j=0}^{J} \left(\mathcal{E}_{j}^{-}, \mathcal{E}_{j}^{+} \right).$$

Let $T = T^*$,

$$N_{\mathcal{I}}(T) := \operatorname{rank} \mathbb{1}_{\mathcal{I}}(T)$$

where $\mathbb{1}_{\mathcal{I}}(T)$ is the spectral projection of T corresponding to the interval $\mathcal{I} \subset \mathbb{R}$. Put

$$\mathcal{N}_{0}^{+}(\lambda) = N_{(-\infty,\mathcal{E}_{0}^{+}-\lambda)}(H_{\beta-\varepsilon}), \quad \lambda > 0.$$

Fix $\mathcal{E} \in \left(\mathcal{E}_{j}^{-},\mathcal{E}_{j}^{+}\right), \ j \ge 1$, and set
 $\mathcal{N}_{j}^{-}(\lambda) = N_{(\mathcal{E}_{j}^{-}+\lambda,\mathcal{E})}(H_{\beta-\varepsilon}), \quad \lambda \in (0,\mathcal{E}-\mathcal{E}_{j}^{-}),$
 $\mathcal{N}_{j}^{+}(\lambda) = N_{(\mathcal{E},\mathcal{E}_{j}^{+}-\lambda)}(H_{\beta-\varepsilon}), \quad \lambda \in (0,\mathcal{E}_{j}^{+}-\mathcal{E}).$

Assume that the edge point \mathcal{E}_j^{\pm} is regular. For $x_3 \in \mathbb{T}$ and $m = 1, \ldots, M_j^{\pm}$, introduce the functions

$$\eta_{j,m}^{\pm}(x_{3}) :=$$

4
$$\pi {\sf Re}\,\int_\omega \overline{\partial_arphi \psi_j^\pm(x_t,x_{\sf 3};k_{j,m}^\pm)}$$

$$\left(\beta(x_3)\partial_{\varphi} + \partial_3 + ik_{j,m}^{\pm}\right)\psi_j^{\pm}(x_t, x_3; k_{j,m}^{\pm})\,dx_t,$$

and their mean values

$$\langle \eta_{j,m}^{\pm} \rangle := \frac{1}{2\pi} \int_{\mathbb{T}} \eta_{j,m}^{\pm}(x) dx.$$

For $n \in \mathbb{N}$ and $\alpha > 0$ set

$$\mathcal{S}_{n,\alpha}(\mathbb{R}) := \{ u = \overline{u} \in C^n(\mathbb{R}) \mid$$

 $|u^{(\ell)}(x)| \le c_{\ell}(1+|x|)^{-\alpha-\ell}, x \in \mathbb{R}, \ell = 0, ..., n \}.$

$$\mathcal{S}_{n,\alpha}^+(\mathbb{R}) := \{ u \in \mathcal{S}_{n,\alpha}(\mathbb{R}) \}$$

 $\exists C > 0, R > 0 \text{ such that } u(x) \ge C|x|^{-\alpha}, |x| \ge R \}.$

Informally, our two next theorems will say that

$$\mathcal{N}_{j}^{\pm}(\lambda) \sim$$

$$\sum_{m=1}^{M_j^{\pm}} N_{(-\infty,-\lambda)} \left(-\mu_{j,m}^{\pm} \frac{d^2}{dx^2} \mp \langle \eta_{j,m}^{\pm} \rangle \varepsilon(x) \right),$$

as $\lambda \downarrow 0$. Hence, at that moment, the operator

$$\bigoplus_{m=1}^{M_{j}^{\pm}} \left(-\mu_{j,m}^{\pm} \frac{d^{2}}{dx^{2}} \mp \langle \eta_{j,m}^{\pm} \rangle \varepsilon(x) \right)$$
(3)

self-adjoint in $L^2(\mathbb{R})$, can be considered as the *effective Hamiltonian* which models the behaviour of the discrete spectrum of $H_{\beta-\varepsilon}$ near the regular edge point \mathcal{E}_j^{\pm} of $\sigma(H_{\beta})$. **Theorem 7.** Let $\beta \in C^4(\mathbb{T})$, and $(\mathcal{E}_j^-, \mathcal{E}_j^+)$, $j \geq 0$, be an open gap in $\sigma(H_\beta)$. Assume that the edge point \mathcal{E}_j^{\pm} is regular.

(i) Let $\alpha \in (0,2)$, $\varepsilon \in S_{4,\alpha}^+(\mathbb{R})$. If there exists at least one m such that $\pm \langle \eta_{j,m}^{\pm} \rangle > 0$, we have

 $\mathcal{N}_j^{\pm}(\lambda) =$

 $\sum_{m=1}^{M_j^{\pm}} \frac{1}{\pi \sqrt{\mu_{j,m}^{\pm}}} \int_{\mathbb{R}} \left(\pm \langle \eta_{j,m}^{\pm} \rangle \varepsilon(x) - \lambda \right)_{+}^{1/2} dx \left(1 + o(1) \right)$

$$\asymp \lambda^{\frac{1}{2} - \frac{1}{\alpha}},$$

as $\lambda \downarrow 0$. If, on the contrary, $\pm \langle \eta^{\pm}_{j,m} \rangle < 0$ for all m, then

$$\mathcal{N}_{j}^{\pm}(\lambda) = O(1), \quad \lambda \downarrow 0.$$
 (4)

(ii) Let $\alpha \in (0,2)$, $\pm \langle \eta_{j,m}^{\pm} \rangle \leq 0$ for all m, and $\langle \eta_{j,m}^{\pm} \rangle = 0$ for some m. Suppose that $\varepsilon \in S_{4,\alpha}(\mathbb{R})$. Then for each $\kappa > 0$ we have

$$\mathcal{N}_{j}(\lambda) = O(\lambda^{\frac{1}{2}(1-\frac{1}{\alpha})-\kappa)}), \quad \lambda \downarrow 0,$$

 $\alpha \in (0,1], \text{ while (4) holds true if } \alpha \in (1,2).$

if

(iii) Let $\alpha = 2$. Suppose that and there exists $L \in \mathbb{R}$ such that

$$\lim_{|x|\to\infty} x^2 \varepsilon(x) = L.$$

Then

(4) holds true.

$$\begin{split} \lim_{\lambda \downarrow 0} |\ln \lambda|^{-1} \mathcal{N}_{j}^{\pm}(\lambda) &= \frac{1}{\pi} \sum_{m=1}^{M_{j}^{\pm}} \left(\frac{\pm \langle \eta_{j,m}^{\pm} \rangle L}{\mu_{j,m}^{\pm}} - \frac{1}{4} \right)_{+}^{1/2} \\ \text{If, moreover, } \pm 4 \langle \eta_{j,m}^{\pm} \rangle L < \mu_{j,m}^{\pm} \text{ for all } m, \text{ then} \end{split}$$

(iv) Let $\alpha > 2$. Then (4) holds true again.

Idea of the proof of Theorem 7

An effective Hamiltonian, more informative than the one defined in (3), is the operator

$$\bigoplus_{m=1}^{M_j^{\pm}} \left(-\mu_{j,m}^{\pm} \frac{d^2}{dx^2} \mp \eta_{j,m}^{\pm}(x) \varepsilon(x) \right),$$

which involves the periodic functions $\eta_{j,m}^{\pm}$ instead of their mean values $\langle \eta_{j,m}^{\pm} \rangle$.

Basically, we have to deal with the asymptotic behaviour of the discrete spectrum of the operator

$$\mathcal{H}_{\mathsf{eff}} := -\frac{d^2}{dx^2} - \eta(x)\varepsilon(x), \quad x \in \mathbb{R},$$

self-adjoint in L²(\mathbb{R}). Here $\varepsilon \geq 0$ decays regularly at infinity, but η is a 2π -periodic function which generically is not constant, so that the decay of the product $\eta\varepsilon$ is not regular, In the following proposition we summarize the eigenvalue asymptotics for \mathcal{H}_{eff} .

Proposition 8. Let $\eta \in C^4(\mathbb{T})$, $\varepsilon \in S_{4,\alpha}(\mathbb{R})$, $\alpha > 0.$ (i) Let $\alpha \in (0,2)$, $\varepsilon \in S^+_{4,\alpha}(\mathbb{R})$. If $\langle \eta \rangle > 0$, then $N_{(-\infty,-\lambda)}(\mathcal{H}_{\text{eff}}) =$ $\frac{1}{\pi} \int_{\mathbb{D}} \left(\langle \eta \rangle \varepsilon(x) - \lambda \rangle_{+}^{1/2} dx \left(1 + o(1) \right) \asymp \lambda^{\frac{1}{2} - \frac{1}{\alpha}} \right)$ as $\lambda \downarrow 0$. If, on the contrary, $\langle \eta \rangle < 0$, then $N_{(-\infty,-\lambda)}(\mathcal{H}_{\text{eff}}) = O(1), \quad \lambda \downarrow 0, \quad (5)$ (ii) Let $\alpha \in (0,2)$, $\langle \eta \rangle = 0$. Then, $N_{(-\infty,\lambda)}(\mathcal{H}_{\text{eff}}) = O(\lambda^{\frac{1}{2}(1-\frac{1}{\alpha})-\kappa)}), \ \lambda \downarrow 0, \ \kappa > 0,$ if $\alpha \in (0, 1]$, while (5) holds true if $\alpha \in (1, 2)$. (iii) Let $\alpha = 2$. Assume that $\lim_{|x|\to\infty} x^2 \varepsilon(x) = L \in \mathbb{R}.$

Then,

$$\begin{split} &\lim_{\lambda \downarrow 0} |\ln \lambda|^{-1} N_{(-\infty,-\lambda)}(\mathcal{H}_{\text{eff}}) = \frac{1}{\pi} \left(\langle \eta \rangle L - \frac{1}{4} \right)_{+}^{1/2}. \\ & \text{If, moreover, } 4 \langle \eta \rangle L < 1, \text{ then (5) holds true.} \\ & \text{(iv) Let } \alpha > 2. \text{ Then (4) holds true again.} \end{split}$$