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Invariants of disordered topological insulators

What is a topological insulator?

• d-dimensional disordered system of independent Fermions with
basic symmetries and having non-trivial topology in the bulk

• Gap or Anderson localization regime at Fermi level

• Basic symmetries are a combination of

TRS, PHS, SLS = time reversal, particle hole, sublattice symmetry

• Topology of bulk = of Bloch bundles of periodic approximants:

winding numbers, Chern numbers, Z2-invariants, higher invariants

• Delocalized edge modes with non-trivial topology

• Bulk-edge correspondence, stable w.r.t. disorder

• Toy models: tight-binding, Dirac-like operators

• Wider notions include interactions, bosons, spins, photonic crys.
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Examples of topological insulators in d = 2:

• Integer quantum Hall systems (no symmetries at all)

• Quantum spin Hall systems (Kane-Mele 2005, odd TRS)

dissipationless spin polarized edge currents, spin-charge separation

• Dirty superconductors (Bogoliubov-de Gennes BdG models):

Thermal quantum Hall effect (even PHS)

Majorana modes at Landau-Ginzburg vortices (even PHS)

Spin quantum Hall effect (SU(2)-invariant, odd PHS)

• Example in d = 1: Kitaev chain with Majorana modes

• Example in d = 3: chiral unitary systems
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Menu for the talk

• Some standard background on Fredholm operators

• Review of quantum Hall systems (focus on topology)

• Classification of d = 2 topological insulators

• Needed: Fredholm operators with symmetries

• More on the physics of d = 2 systems: QSH and BdG
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Fredholm operators and Noether indices

Definition T ∈ B(H) bounded Fredholm operator on Hilbert space

⇐⇒ TH closed, dim(Ker(T )) <∞, dim(Ker(T ∗)) <∞

Then: Ind(T ) = dim(Ker(T ))− dim(Ran(T )) Noether index

Theorem Ind(T ) compactly stable homotopy invariant

Noether Index Theorem f ∈ C (S1) invertible, Π Hardy on L2(S1)

=⇒ Wind(f ) =
∫
f −1df = − Ind(Πf Π)

Atiyah-Singer index theorems in differential topology

Alain Connes non-commutative geometry and topology

Applications in physics Anomalies in QFT, Defects, etc.

Solid state physics robust labelling of different phases

Problem determine Fredholm operator in concrete situation
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Review of quantum Hall system (no symmetries)

Toy model: disordered Harper Hamiltonian on Hilbert space `2(Z2)

H = U1 + U∗1 + U2 + U∗2 + λdisV

U1 = e iϕX2S1 and U2 = S2 with magnetic flux ϕ and S1,2 shifts

random potential V =
∑

n∈Z2 Vn|n〉〈n| with i.i.d. Vn ∈ R

Fermi projection P = χ(H ≤ µ) with µ in And. localization regime

Theorem (Connes, Bellissard, Kunz, Avron, Seiler, Simon ...)

PFP Fredholm operator , F =
X1 + iX2

|X1 + iX2|
Index equal to Chern number

Ind(PFP) = Ch(P) = 2πi E 〈0|P [[X1,P], [X2,P]]|0〉

=

∫
d2k

2πi
Trq(P [∂1P, ∂2P])
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Physical consequences

Theorem
(Thouless et.al. 1982, Avron, Seiler, Simon 1983-1994, Kunz 1987,
Bellissard, van Elst, S-B 1994, ...)

Kubo formula for zero temperature Hall conductivity σH(µ)

σH(µ) =
e2

h
Ch(P)

and µ ∈ ∆ 7→ σH(µ) constant if Anderson localization in ∆ ⊂ R

Theorem

(Rammal, Bellissard 1985, Resta 2010, S-B, Teufel 2013)

M(µ) = ∂Bp(T = 0, µ) orbital magnetization at zero temperature

∂µM(µ) = Ch(P) µ ∈ ∆
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Link to spectral flow (Laughlin argument 1981)

Folk involves adiabatics; for Landau see Avron, Pnuelli (1992)

Theorem (Macris 2002, Nittis, S-B 2014 )

Hamiltonian H(α) with extra flux α ∈ [0, 1] through 1 cell of Z2

H(α)− H compact, so only discrete spectrum close to µ in gap

Ch(P) = Spectral Flow
(
α ∈ [0, 1] 7→ H(α) through µ

)
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Bulk-edge correspondence

Edge currents in periodic systems: Halperin 1982, Hatsugai 1993

Theorem (S-B, Kellendonk, Richter 2000, 2002)

µ ∈ ∆ gap of H and Ĥ restriction to half-space `2(Z× N)

With g : R→ [0, 1] increasing from 0 to 1 in ∆

T̂ (g ′(Ĥ) Ĵ1) = Ch(P)

where Ĵ1 = i [X1, Ĥ] = ∇1Ĥ current operator and

T̂ (Â) =
∑
x2≥0

E 〈0, x2| Â |0, x2〉 tracial state on edge ops

Moreover, link to winding number of V̂ = exp(2πi g(Ĥ))

Ch(P) = i T̂ (V̂ ∗∇1V̂ )

without gap condition: Elgart, Graf, Schenker 2005
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Macris’ argument for bulk-edge correspondence

Ch(P) = Ind(PFP) = −
∫ 1

0
dα Tr

(
g ′(H̃N

α ) ∂αH̃
N
α

)
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Tight-binding toy models in dimension d = 2

Hilbert space `2(Z2)⊗ CL

Fiber CL = C2s+1 ⊗ Cr with spin s and r internal degrees

e.g. Cr = C2
ph ⊗ C2

sl particle-hole space and sublattice space

Typical Hamiltonian

H =
4∑

i=1

(W ∗
i Ui + WiU

∗
i ) + W0 + λdis V

U1 and U2 magnetic translations as above

next nearest neighbor U3 = U∗1U2 and U4 = U1U2

Wi matrices L× L (e.g. for spin orbit coupling, pair creation)

Matrix potential V = V ∗ =
∑

n∈Z2 Vn|n〉〈n| random (i.i.d.)

Fredholm operator PFP where P = χ(H ≤ µ) and F = X1+iX2
|X1+iX2|
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Implementing symmetries

SLS (Chiral) : K ∗sl H Ksl = −H
TRS : I ∗s H Is = H

PHS : K ∗ph H Kph = −H

Ksl, Is and Kph real unitaries on fibers C2
sl, C2s+1, C2

ph with

K 2
sl = ±1 I 2s = ±1 K 2

ph = ±1

Sign of Ksl irrelevant, but TRS and PHS can be even or odd

Example: Is = e iπs
y

even/odd = integer/half-integer spin

Note: TRS + PHS =⇒ SLS with Ksl = IsKph

10 combinations of symmetries: none (1), one (5), three (4)

10 Cartan-Altland-Zirnbauer classes, 2 complex and 8 real
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Classification of d = 2 topological insulators

Schnyder, Ryu, Furusaki, Ludwig 2008, reordering Kitaev 2008

Nittis, S-B 2014: classification with T = PFP (strong invariants)

CAZ TRS PHS SLS System symmetry Ind Topology

A 0 0 0 QHE none Z K 0(R2)
AIII 0 0 1 K ∗slTKsl = T c 0 K 1(R2)

D 0 +1 0 TQH none Z KR2(R2)
DIII −1 +1 1 SCS two Z2 KR3(R2)
AII −1 0 0 QSH I ∗s T

t Is = T Z2 KR4(R2)
CII −1 −1 1 two 0 KR5(R2)
C 0 −1 0 SQH Ker(T ) quat. 2Z KR6(R2)
CI +1 −1 1 two 0 KR7(R2)
AI +1 0 0 I ∗s T

t Is = T 0 KR0(R2)
BDI +1 +1 1 two 0 KR1(R2)

Milnor: KRn(R2) = πn−3(O) where O stable orthogonal group
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Z2 indices of odd symmetric Fredholm operators

I = Is real unitary on Hilbert space H with real structure, I 2 = −1

Definition T odd symmetric ⇐⇒ I ∗T t I = T with T t = (T )∗

Theorem (S-B 2013)

F2(H) = {odd symmetric Fredholm operators} has 2 connected
components labeled by the compactly stable homotopy invariant:

Ind2(T ) = dim(Ker(T )) mod 2 ∈ Z2

Class AII (QSH): H odd TRS ⇐⇒ I ∗HI = H ⇐⇒ I ∗Ht I = H

So: H odd symmetric =⇒ Hn odd sym. =⇒ f (H) odd sym.

Fermi projection P odd sym. and PFP odd sym. Fredholm

Ind2(PFP) ∈ Z2 well-defined , F =
X1 + iX2

|X1 + iX2|
Also for Fermi level in region of dynamically localized states!
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Proofs for Z2 indices (S-B 2013)

Proposition Even degeneracies for odd symmetric matrices.

Proof: odd symmetry I ∗T t I = T =⇒ (IT )t = −IT
=⇒ det(T − z 1) = det(IT − z I ) = Pf(IT − z I )2 2

Similar to Kramers’ degeneracy, but no invariance under ψ 7→ Iψ

Proposition K compact odd symmetric

=⇒ 1 + K even degeneracies and Ind2(1 + K ) = 0

This is a weak form of compact stability, namely at T = 1

Theorem (Siegel) T odd symmetric ⇐⇒ T = I ∗At IA

Proof of connectedness:

Ind2(T ) = 0 =⇒ T invertible (mod K) =⇒ A invertible

s ∈ [0, 1] 7→ As homotopy to 1

=⇒ s ∈ [0, 1] 7→ Ts = I ∗(As)t IAs path to 1 in odd symmetrics
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Quantum spin Hall system (odd TRS, Class AII)

Disordered Kane-Mele model on hexagon lattice and with s = 1
2

H = ∆hexagon + HSO + HRa + λdisV

Pseudo-gap at Dirac point opens non-trivially due to

HSO = i λSO

∑
i=1,2,3

(Snn
i − (Snn

i )∗) sz

No sz -conservation due to Rashba term HRa, but odd TRS

Non-trivial topology:

Kane-Mele (2005): Z2 invariant for periodic system from Pfaffians

Haldane et al. (2005): spin Chern numbers for sz invariant systems

Prodan (2009): spin Chern number from Ps = χ(|PszP − 1
2 | <

1
2)

SCh(P) = Ch(Ps) ∈ Z

Periodic systems: Avila, S-B, Villegas 2013, Graf, Porta 2013
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Z2 invariant and spin-charge separation

Theorem Ind2(PFP) phase label for odd TRS

Theorem (Nittis, S-B, 2014)

Ind2(PFP) = 1 =⇒ H(α = 1
2) has TRS + Kramers pair in gap
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Spin filtered helical edge channels for QSH

Theorem (S-B 2013)

Ind2(PFP) = 1 =⇒ spin Chern numbers SCh(P) 6= 0

Remark Non-trivial topology SCh(P) persists TRS breaking!

Theorem (S-B 2012)

If SCh(P) 6= 0, dissipationless spin filtered edge currents are stable
w.r.t. perturbations by magnetic field and disorder:

T̂
(
g ′(Ĥ) 1

2

{
Ĵ1, s

z
})

= SCh(P) + correct.

Resumé: Ind2(PFP) = 1 =⇒ no Anderson loc. for edge states

Rice group: Du, Knez, et al since 2011 in InAs/GaSb Bilayers

Four-terminal conductance plateaux stable w.r.t. magnetic field

Here spin Chern number is relevant and not Z2 invariant!
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Resumé

• Topological insulators have non-trivial Bloch theory

• Invariants persist under weak disorder

• Edge states are not exposed to Anderson localization

• Physical effects have to be studied case by case


