The classical entropy of quantum states¹

Jan Philip Solovej Department of Mathematics University of Copenhagen

Spectral Days, CIRM June 10, 2014

¹ Joint work with Elliott Lieb

Abstract of Talk

- To quantify the inherent uncertainty of quantum states Wehrl ('79) suggested a definition of their **classical entropy** based on the coherent state transform.
- He conjectured that this **classical entropy** is **minimized** by states that also minimize the Heisenberg uncertainty inequality, i.e., **Gaussian coherent states**.
- Lieb ('78) proved this conjecture and conjectured that the same holds when Euclidean Glauber coherent states are replaced by SU(2) Bloch coherent states.
- This conjecture was settled last year in joint work with Lieb. Recently we simplified the proof and generalized it to SU(N) for general N. I will present this here.
- In proving the conjecture we study the quantum channels known as Universal Quantum Cloning Machines and determine their minimal output entropy. Thanks to K. Bradler for pointing this out.

Outline of Talk

- 1 Coherent states and quantization
- States of minimal classical entropy
- **3** SU(N)-coherent states
- **4** Classical SU(N) entropy inequality
- **5** Generalization to Quantum Channels
- 6 Formulation in terms of majorization
- Using bosonic 2nd quantization
- 8 A normal ordering formula
- The classical limit (if time permits)

- Classical phase space: $\mathcal{M} = \mathbb{R}^{2n}$ position and momentum (q, p).
- Quantum description: Hilbert space $\mathcal{H} = L^2(\mathbb{R}^n)$.
- Quantization: Function A on \mathcal{M} to operator Op(A) on \mathcal{H} .
- Pure states²: Described by normalized $\psi \in L^2(\mathbb{R}^n)$ gives "distribution" on phase space Φ_{ψ} such that

$$\langle \psi, Op(A)\psi \rangle = (2\pi)^{-n} \iint \Phi_{\psi}(q, p)A(q, p)dqdp$$

- Weyl quantization leads to $\Phi_{\psi}(q, p)$ Wigner distribution, which is not necessarily positive.
- Better to use Wick or coherent state quantization

²The state is really represented by the 1-dim projection $|\psi\rangle\langle\psi|$. More general non-pure states represented by density matrices (operators): $0 \le \rho$, Tr $\rho = 1$.

Coherent state quantization

Coherent states, i.e., states of minimal Heisenberg uncertainty

$$f_{q,p}(x) = \pi^{-n/4} \exp(-(x-q)^2/2 + ipx) \in L^2(\mathbb{R}^n)$$

satisfy $(x + \nabla)f_{q,p} = (q + ip)f_{q,p}$. They define **quantization map**

$$Op(A) = (2\pi)^{-n} \iint A(q,p) |f_{q,p}\rangle \langle f_{q,p}| dqdp.$$

leads to lower or covariant symbol or Husimi Q-function

$$\Phi_{\psi}(q,p) = |\langle f_{q,p} | \psi \rangle|^2.$$

Then $0 \le \Phi_{\psi}(q, p) \le 1$ and $(2\pi)^{-n} \iint \Phi_{\psi}(q, p) dq dp = 1$. Wehrl classical entropy:

$$S^{\mathrm{cl}}(\psi) = (2\pi)^{-n} \iint -\Phi_{\psi}(q,p) \log\left(\Phi_{\psi}(q,p)\right) dq dp.$$

Theorem (Lieb '78, Conjectured by Wehrl)

States of minimal entropy are states of minimal Heisenberg uncertainty, i.e., for all ψ and all q,p

$$S^{\mathrm{cl}}(\psi) \ge S^{\mathrm{cl}}(f_{q,p}).$$

Proof based on sharp **Young** and **Hausdorff-Young** inequalities³. Carlen '91 proved **"uniqueness"** of minimizers. In fact, $-t \log(t)$ may be replaced by any **concave function**:

Theorem (Lieb-Solovej '12)

For all continuous concave $f:[0,1] \rightarrow \mathbb{R}$, f(0) = 0

$$\iint f\left(\Phi_{\psi}(q',p')\right) dq' dp' \ge \iint f\left(\Phi_{f_{q,p}}(q',p')\right) dq' dp'$$

³Note that both Y and HY inequalities are optimized by Gaussians

SU(N) coherent states

- Consider the Hilbert space $\mathcal{H}_M = \bigotimes_{\text{SYM}}^M \mathbb{C}^N$, i.e., the space of M Bosons with N degrees of freedom.
- SU(N) acts irreducibly on \mathcal{H}_M (not all irr. repr. unless N = 2).
- Special states on \mathcal{H}_M , coherent vectors, highest weight vectors, pure condensates: $\otimes^M u$, $u \in \mathbb{C}^N$.
- The state $|\otimes^{M} u\rangle\langle\otimes^{M} u|$ depends only on the unit vector $u \in \mathbb{C}^{N}$ modulo a phase, i.e., really $u \in \mathbb{CP}^{N-1}$
- \mathbb{CP}^{N-1} is a classical phase space and \mathcal{H}_M is a quantization. Quantization map:

$$Op(A) = \dim \mathcal{H}_M \int_{\mathbb{CP}^{N-1}} A(u) |\otimes^M u\rangle \langle \otimes^M u | du, \quad Op(1) = I$$

du is SU(N) invariant (Liouville) measure on \mathbb{CP}^{N-1} .

• Husimi function for general state ρ on \mathcal{H}_M

$$\Phi^{\infty}(\rho)(u) = \langle \otimes^{M} u | \rho | \otimes^{M} u \rangle,$$

Classical SU(N) entropy inequality

Theorem (Classical "entropy" inequality, Lieb-Solovej '13)

For all integers M, N, all concave $f : [0, 1] \to \mathbb{R}$, all states ρ on \mathcal{H}_M , and all $v \in \mathbb{CP}^{N-1}$

$$\int_{\mathbb{CP}^{N-1}} f\left(\Phi^{\infty}(\rho)(u)\right) du \ge \int_{\mathbb{CP}^{N-1}} f\left(\Phi^{\infty}(|\otimes^{M} v\rangle\langle\otimes^{M} v|)(u)\right) du$$

- For N = 2, i.e., SU(2), CP^{N-1} = S² is the Bloch sphere. In this case and for the entropy function f(t) = -t log(t) the result was conjectured by Lieb 1978. A proof of this case is to appear soon and is on the archive.
- Special cases of M for N = 2 and the entropy function had been considered by Schupp '99, Scutaru '02
- For N>2 the compact manifold \mathbb{CP}^{N-1} is **not** a sphere.

Generalization to Quantum channels

 Φ^{∞} is a map from a quantum state to a classical prob. distribution. We generalize to **completely positive trace preserving** maps, i.e., **quantum channels** Φ^k from operators on \mathcal{H}_M to operators on \mathcal{H}_{M+k} ,

$$\Phi^k(\rho) = C_{M,N.k} P_{\text{sym}}(\rho \otimes I_{\otimes^k \mathbb{C}^N}) P_{\text{sym}}.$$

The value of the normalization constant $C_{M,N,k}$ is not important here. The channels Φ^k are known as universal quantum cloners. We determine their minimal output entropy.

Theorem (Lieb-Solovej '13)

For all M, all k, all concave $f : [0,1] \to \mathbb{R}$, all states ρ on \mathcal{H}_M , and all $v \in \mathbb{CP}^{N-1}$

$$\operatorname{Tr}_{\mathcal{H}_{M+k}} f\left(\Phi^{k}(\rho)\right) \geq \operatorname{Tr}_{\mathcal{H}_{M+k}} f\left(\Phi^{k}(|\otimes^{M} v\rangle\langle\otimes^{M} v|)\right)$$

Formulation in terms of majorization

The classical entropy inequality follows from the classical limit:

$$\lim_{k \to \infty} \frac{1}{\dim \mathcal{H}_{M+k}} \operatorname{Tr}_{\mathcal{H}_{M+k}} f\left(\frac{\dim \mathcal{H}_{M+k}}{\dim \mathcal{H}_{M}} \Phi^{k}(\rho)\right)$$
$$= \int_{\mathbb{CP}^{N-1}} f\left(\Phi^{\infty}(\rho)(u)\right) du$$

Alternatively to using traces of concave functions the previous theorem may be equivalently (Karamata's Theorem) rephrased as

Theorem

For all states ρ on \mathcal{H}_M and all $v \in \mathbb{CP}^{N-1}$ the ordered eigenvalues of $\Phi^k(|\otimes^M v\rangle \langle \otimes^M v|)$ majorizes the ordered eigenvalues of $\Phi^k(\rho)$.

Def. $a_1 \ge a_2 \ge \cdots \ge a_J$ majorizes $b_1 \ge b_2 \ge \cdots \ge b_J$ if

$$\sum_{j=1}^m a_j \geq \sum_{j=1}^m b_j, \ m \leq J-1, \quad \text{and} \quad \sum_{j=1}^J a_j = \sum_{j=1}^J b_j.$$

Using bosonic 2nd quantization

We introduce the **Bosonic annihilation** operators a_i , i = 1, ..., N (indexing a basis e_i of \mathbb{C}^N) and their adjoints the **creation** operators a_i^* :

$$a_i^*: \bigoplus_{M=0}^{\infty} \mathcal{H}_M \to \bigoplus_{M=0}^{\infty} \mathcal{H}_M, \qquad a_i^*(\mathcal{H}_M) \subseteq \mathcal{H}_{M+1}$$
$$a_i^* \phi = \sqrt{M+1} P_{\text{sym}}(e_i \otimes \phi) \text{ for } \phi \in \mathcal{H}_M$$

Then in Kraus form

$$\Phi^{k}(\rho) = C'_{M,N,k} \sum_{i_{1},\dots,i_{k}} a^{*}_{i_{1}} \cdots a^{*}_{i_{k}} \rho a_{i_{k}} \cdots a_{i_{1}}$$

Two observations:

- Ordered eigenvalue sums are convex: may assume $\rho = |\psi\rangle\langle\psi|$.
- The non-zero eigenvalues of $\Phi^k(|\psi\rangle\langle\psi|)$ equal the non-zero eigenvalues (counting multiplicities) of the matrix

$$C'_{M,N,k}\langle\psi|a_{i_k}\cdots a_{i_1}a_{j_1}^*\cdots a_{j_k}^*|\psi\rangle.$$

A normal ordering formula

The matrix (the outcome of the **transpose channel** to Φ^k)

$$\Gamma_{i_1,\ldots,i_k;j_1,\ldots,j_k} = \langle \psi | a_{i_k} \cdots a_{i_1} a_{j_1}^* \cdots a_{j_k}^* | \psi \rangle.$$

represents an operator Γ on \mathcal{H}_k . It is the **anti-normal ordering** of the matrix elements of the **reduced** k-particle density matrix

$$(\gamma_{\psi})_{i_1,\dots,i_k;j_1,\dots,j_k} = \langle \psi | a_{j_1}^* \cdots a_{j_k}^* a_{i_k} \cdots a_{i_1} | \psi \rangle.$$

In fact, normal ordering gives (See also Chiribella '10)

$$\Gamma = \sum_{\ell=0}^{k} C_{\ell} \Phi^{\ell}(\gamma_{\psi}^{(k-\ell)})$$

for coefficients $C_{\ell} > 0$. The **majorization theorem** follows by **induction on** k: Induction start: $\Phi^0 = \text{Id.}$ Induction step:

$$\begin{split} \Phi^{\ell}(\gamma_{\otimes^{M}v}^{(k-\ell)}) &= c_{M,k,\ell} \Phi^{\ell}(|\otimes^{k-\ell}v\rangle \langle \otimes^{k-\ell}v|), \quad (c_{M,k,\ell} = \operatorname{Tr} \gamma_{\psi}^{(k-\ell)}) \\ \text{majorizes } \Phi^{\ell}(\gamma_{\psi}^{(k-\ell)}) \text{ for all } \ell < k, \text{ but } \ell = k \text{ obvious.} \end{split}$$

The classical limit (only one sided inequality)

Will show a version of the **Berezin-Lieb inequality**: For f concave

$$\frac{1}{\dim \mathcal{H}_{M+k}} \operatorname{Tr}_{\mathcal{H}_{M+k}} f\left(\frac{\dim \mathcal{H}_{M+k}}{\dim \mathcal{H}_{M}} \Phi^{k}(\rho)\right) \leq \int_{\mathbb{CP}^{N-1}} f\left(\Phi^{\infty}(\rho)(u)\right) du$$

If $\rho = |\otimes^M v\rangle \langle \otimes^M v|$ right side explicitly limit $k \to \infty$ of left side: That is all we need!

Jensen's inequality implies Berezin-Lieb-inequality:

$$\frac{1}{\dim \mathcal{H}_{M+k}} \operatorname{Tr}_{\mathcal{H}_{M+k}} f\left(\frac{\dim \mathcal{H}_{M+k}}{\dim \mathcal{H}_{M}} \Phi^{k}(\rho)\right)$$

$$= \int_{\mathbb{CP}^{N-1}} \left\langle \otimes^{M+k} u \left| f\left(\frac{\dim \mathcal{H}_{M+k}}{\dim \mathcal{H}_{M}} \Phi^{k}(\rho)\right) \right| \otimes^{M+k} u \right\rangle du$$

$$\leq \int_{\mathbb{CP}^{N-1}} f\left(\frac{\dim \mathcal{H}_{M+k}}{\dim \mathcal{H}_{M}} \left\langle \otimes^{M+k} u \left| \Phi^{k}(\rho) \right| \otimes^{M+k} u \right\rangle \right) du$$

$$= \int_{\mathbb{CP}^{N-1}} f\left(\langle \otimes^{M} u | \rho | \otimes^{M} u \rangle\right) du = \int_{\mathbb{CP}^{N-1}} f\left(\Phi^{\infty}(\rho)(u)\right) du$$