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Abstract of Talk

• To quantify the inherent uncertainty of quantum states Wehrl
(’79) suggested a definition of their classical entropy based
on the coherent state transform.

• He conjectured that this classical entropy is minimized by
states that also minimize the Heisenberg uncertainty
inequality, i.e., Gaussian coherent states.

• Lieb (’78) proved this conjecture and conjectured that the
same holds when Euclidean Glauber coherent states are
replaced by SU(2) Bloch coherent states.

• This conjecture was settled last year in joint work with Lieb.
Recently we simplified the proof and generalized it to SU(N)
for general N . I will present this here.

• In proving the conjecture we study the quantum channels
known as Universal Quantum Cloning Machines and
determine their minimal output entropy. Thanks to
K. Bradler for pointing this out.
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Quantization

• Classical phase space: M = R2n position and momentum
(q, p).

• Quantum description: Hilbert space H = L2(Rn).

• Quantization: Function A on M to operator Op(A) on H.

• Pure states2: Described by normalized ψ ∈ L2(Rn) gives
“distribution” on phase space Φψ such that

〈ψ,Op(A)ψ〉 = (2π)−n
∫∫

Φψ(q, p)A(q, p)dqdp

• Weyl quantization leads to Φψ(q, p) Wigner distribution,
which is not necessarily positive.

• Better to use Wick or coherent state quantization

2The state is really represented by the 1-dim projection |ψ〉〈ψ|. More general
non-pure states represented by density matrices (operators): 0 ≤ ρ, Tr ρ = 1.
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Coherent state quantization

Coherent states, i.e., states of minimal Heisenberg uncertainty

fq,p(x) = π−n/4 exp(−(x− q)2/2 + ipx) ∈ L2(Rn)

satisfy (x+∇)fq,p = (q + ip)fq,p.
They define quantization map

Op(A) = (2π)−n
∫∫

A(q, p)|fq,p〉〈fq,p|dqdp.

leads to lower or covariant symbol or Husimi Q-function

Φψ(q, p) = |〈fq,p|ψ〉|2.

Then 0 ≤ Φψ(q, p) ≤ 1 and (2π)−n
∫∫

Φψ(q, p)dqdp = 1.
Wehrl classical entropy:

Scl(ψ) = (2π)−n
∫∫
−Φψ(q, p) log (Φψ(q, p)) dqdp.
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States of minimal entropy

Theorem (Lieb ’78, Conjectured by Wehrl)

States of minimal entropy are states of minimal Heisenberg
uncertainty, i.e., for all ψ and all q, p

Scl(ψ) ≥ Scl(fq,p).

Proof based on sharp Young and Hausdorff-Young inequalities3.
Carlen ’91 proved “uniqueness” of minimizers.
In fact, −t log(t) may be replaced by any concave function:

Theorem (Lieb-Solovej ’12)

For all continuous concave f : [0, 1]→ R, f(0) = 0∫∫
f
(
Φψ(q′, p′)

)
dq′dp′ ≥

∫∫
f
(
Φfq,p(q′, p′)

)
dq′dp′

3Note that both Y and HY inequalities are optimized by Gaussians
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SU(N) coherent states

• Consider the Hilbert space HM =
⊗M

SYMCN , i.e., the space
of M Bosons with N degrees of freedom.

• SU(N) acts irreducibly on HM (not all irr. repr. unless
N = 2).

• Special states on HM , coherent vectors, highest weight
vectors, pure condensates: ⊗Mu, u ∈ CN .

• The state | ⊗M u〉〈⊗Mu| depends only on the unit vector
u ∈ CN modulo a phase, i.e., really u ∈ CPN−1

• CPN−1 is a classical phase space and HM is a quantization.
Quantization map:

Op(A) = dimHM
∫
CPN−1

A(u)|⊗M u〉〈⊗Mu|du, Op(1) = I

du is SU(N) invariant (Liouville) measure on CPN−1.
• Husimi function for general state ρ on HM

Φ∞(ρ)(u) = 〈⊗Mu|ρ| ⊗M u〉,
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Classical SU(N) entropy inequality

Theorem (Classical “entropy” inequality, Lieb-Solovej ’13)

For all integers M,N , all concave f : [0, 1]→ R, all states ρ on
HM , and all v ∈ CPN−1∫

CPN−1
f (Φ∞(ρ)(u)) du ≥

∫
CPN−1

f
(
Φ∞(| ⊗M v〉〈⊗Mv|)(u)

)
du

• For N = 2, i.e., SU(2), CPN−1 = S2 is the Bloch sphere. In
this case and for the entropy function f(t) = −t log(t) the
result was conjectured by Lieb 1978. A proof of this case is to
appear soon and is on the archive.

• Special cases of M for N = 2 and the entropy function had
been considered by Schupp ’99, Scutaru ’02

• For N > 2 the compact manifold CPN−1 is not a sphere.

The classical entropy of quantum states Jan Philip Solovej Slide 8/13



Generalization to Quantum channels

Φ∞ is a map from a quantum state to a classical prob. distribution.
We generalize to completely positive trace preserving maps,
i.e., quantum channels Φk from operators on HM to operators
on HM+k,

Φk(ρ) = CM,N.kPsym(ρ⊗ I⊗kCN )Psym.

The value of the normalization constant CM,N.k is not important
here. The channels Φk are known as universal quantum cloners.
We determine their minimal output entropy.

Theorem (Lieb-Solovej ’13)

For all M , all k, all concave f : [0, 1]→ R, all states ρ on HM ,
and all v ∈ CPN−1

TrHM+k
f
(

Φk(ρ)
)
≥ TrHM+k

f
(

Φk(| ⊗M v〉〈⊗Mv|)
)
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Formulation in terms of majorization

The classical entropy inequality follows from the classical limit:

lim
k→∞

1

dimHM+k
TrHM+k

f

(
dimHM+k

dimHM
Φk(ρ)

)
=

∫
CPN−1

f (Φ∞(ρ)(u)) du.

Alternatively to using traces of concave functions the previous
theorem may be equivalently (Karamata’s Theorem) rephrased as

Theorem

For all states ρ on HM and all v ∈ CPN−1 the ordered eigenvalues
of Φk(| ⊗M v〉〈⊗Mv|) majorizes the ordered eigenvalues of Φk(ρ).

Def. a1 ≥ a2 ≥ · · · ≥ aJ majorizes b1 ≥ b2 ≥ · · · ≥ bJ if

m∑
j=1

aj ≥
m∑
j=1

bj , m ≤ J − 1, and
J∑
j=1

aj =

J∑
j=1

bj .
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Using bosonic 2nd quantization

We introduce the Bosonic annihilation operators ai, i = 1, . . . , N
(indexing a basis ei of CN ) and their adjoints the creation
operators a∗i :

a∗i :

∞⊕
M=0

HM →
∞⊕

M=0

HM , a∗i (HM ) ⊆ HM+1

a∗iφ =
√
M + 1Psym(ei ⊗ φ) for φ ∈ HM .

Then in Kraus form

Φk(ρ) = C ′M,N,k

∑
i1,...,ik

a∗i1 · · · a
∗
ik
ρaik · · · ai1

Two observations:
• Ordered eigenvalue sums are convex: may assume ρ = |ψ〉〈ψ|.
• The non-zero eigenvalues of Φk(|ψ〉〈ψ|) equal the non-zero

eigenvalues (counting multiplicities) of the matrix

C ′M,N,k〈ψ|aik · · · ai1a
∗
j1 · · · a

∗
jk
|ψ〉.
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A normal ordering formula

The matrix (the outcome of the transpose channel to Φk)

Γi1,...,ik;j1,...jk = 〈ψ|aik · · · ai1a
∗
j1 · · · a

∗
jk
|ψ〉.

represents an operator Γ on Hk. It is the anti-normal ordering of
the matrix elements of the reduced k-particle density matrix

(γψ)i1,...,ik;j1,...jk = 〈ψ|a∗j1 · · · a
∗
jk
aik · · · ai1 |ψ〉.

In fact, normal ordering gives (See also Chiribella ’10)

Γ =
k∑
`=0

C`Φ
`(γ

(k−`)
ψ )

for coefficients C` > 0. The majorization theorem follows by
induction on k: Induction start: Φ0 = Id. Induction step:

Φ`(γ
(k−`)
⊗Mv

) = cM,k,`Φ
`(| ⊗k−` v〉〈⊗k−`v|), (cM,k,` = Tr γ

(k−`)
ψ )

majorizes Φ`(γ
(k−`)
ψ ) for all ` < k, but ` = k obvious.
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The classical limit (only one sided inequality)

Will show a version of the Berezin-Lieb inequality: For f concave

1

dimHM+k
TrHM+k

f

(
dimHM+k

dimHM
Φk(ρ)

)
≤
∫
CPN−1

f (Φ∞(ρ)(u)) du

If ρ = | ⊗M v〉〈⊗Mv| right side explicitly limit k →∞ of left side:
That is all we need!
Jensen’s inequality implies Berezin-Lieb-inequality:

1

dimHM+k
TrHM+k

f

(
dimHM+k

dimHM
Φk(ρ)

)
=

∫
CPN−1

〈
⊗M+ku

∣∣∣∣f (dimHM+k

dimHM
Φk(ρ)

)∣∣∣∣⊗M+k u

〉
du

≤
∫
CPN−1

f

(
dimHM+k

dimHM

〈
⊗M+ku

∣∣∣Φk(ρ)
∣∣∣⊗M+k u

〉)
du

=

∫
CPN−1

f
(
〈⊗Mu|ρ| ⊗M u〉

)
du =

∫
CPN−1

f (Φ∞(ρ)(u)) du.
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