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0 o(Hp) =10,00
> Hy=—3A, on [2(RY) o) 2 10.o0)

0 o(Hr)=Uypl
’Hr:_%Ax"i‘Vr(X) (I‘) nin

Bloch bands
with Vr(x +7) = Vr(x) forall x e RY, v € T ~ Z¢

> Hp, = %(_ivx + Ao(x))? ?: :U(:H:BO:) : Un{en}

Landau levels

with dAy = By = const.

> Hr.g, = 5(—1Vx + Ao(x))? + Vi(x)
0 U(HI‘,BO) = UpJn

with ' and By commensurable Magnetic Bloch bands
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> Hp is unitarily equivalent by Fourier transformation to
multiplication by the function $k2 on L2(R9),
Ho ~ 3k*.
» Hr is unitarily equivalent by a Bloch-Floquet transformation to

an orthogonal sum of multiplication operators by functions
En(k) on L3(T9),

H ~ égn(k) on éL2("JI‘d).
n=1 n=1

» Hr B, is unitarily equivalent by a magnetic Bloch-Floquet
transformation to an orthogonal sum of multiplication operators
by functions E,(k) on L?(=,),

Hry ~ ED En(k)  on EHL3(Z,).
n=1 n=1
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What happens when we add to these operators a non-periodic po-
tential W and a non-linear vector potential A corresponding to “small”
fields?
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> Fourier transformation turns Hy = F(—iVa+ A(x))2 + W(x)
into the pseudo-differential operator

Ho ~ L (k+ A(iVi))® + W(iVy).

» Peierls substitution for Bloch bands:
The restriction of Hr = F(—iVa+ A(x))2 + Vi (x) + W(x) to
one of the subspaces L?(T9) under Bloch-Floquet
transformation should be close to

Hr | 2(rey ~ En(k + A(iV)) + W(iVi).

> Peierls substitution for magnetic Bloch bands:
Hr = 3( =iV, + Ao(x) + A(x))® + Vi (x) + W(x) restricted to
one of the subspaces L?(=,) under magnetic Bloch-Floquet
transformation should be close to

Hrli2(z,) ~ En(k + A(iVk)) + W(iVy).
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let d =2, By € R, By := <£0 _5(’). Ao(x) = 3Box

and )
[={a%1+ bV cR?|a,bcZ}
for some basis (%1, %2) of R2.

Let Vq: R? — R be periodic with respect to r
Ve(x+7) = Ve(x) forall vy € [, xeR?,

and relatively bounded with respect to (—iV + Ag(x))? with relative
bound smaller than one.

Then
Hug = %(—ivx + Ao(X))2 + Vf(X)

is self-adjoint on the magnetic Sobolev space HE\O(RZ).
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2. Setup and scaling

Let W € G°(R% R)and A € G°(R2,R?), where we choose a
gauge for A such that A(x) -5, = 0 for all x € R,

Then for ¢ € (0, 0] the magnetic Bloch Hamiltonian perturbed by
slowly varying external fields is

H® = 3(— iV, + Ao(x) + A(ex))” + Vi (x) + W(ex),

which is also self-adjoint on the magnetic Sobolev space Hf‘o(]R2).

For ¢ < 1 the external potentials vary on a scale that is large com-
pared to the fixed lattice spacing of [ and we are interested in the
asymptotic limit € — 0.

Note that all of the following works similarly for slowly perturbed
tight binding models.
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3. Magnetic Bloch Floquet transformation

Define the magnetic translation of functions on R? by 7j as

(Ti0)(x) := ez BoW(x — 7).

On L?(IR?) the magnetic translations are unitary and leave invariant
the magnetic momentum operator and the periodic potential ,

T AV —A) Tj=(=iV—Ay), T 'VTj=V:
and thus -Nrfl Hys 7] = Hys.
Because of

7‘1 7‘2 — oi(72:807) 7‘2 7’1 7
we only obtain a unitary representation of rif (Y2, Boy1) € 2nZ.

Here (72, Boy1) = Bo|M| is the magnetic flux through the unit cell
M of the lattice I with volume |M| =71 A 7.
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3. Magnetic Bloch Floquet transformation

Let the flux of By per unit cell satisfy (7>, Boy1) = 27T§ € 27Q.

By passing to the sublattice I C [ spanned by the basis (y1,72) =
(971, 92) and defining the magnetic translations T7, T, analogously,
we achieve (v2, Boy1) = 27p € 27Z. Hence

T:T— L(L2(R?)), y=mm+myp — T,:=T"T?
is a unitary representation of I' on L?(R?) satisfying
T,;lHMB T,y = Hugr

forallveT.
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3. Magnetic Bloch Floquet transformation

For i € C§°(IR?) the magnetic Bloch-Floquet transformation is
defined by

(Usev)(k, y) = e YKy "V K(T ) (y) .

yel

1) := Upp) satisfies as a function on R? x R

~

Tyip(k, ) = ﬁ(k, ) forall keR?, veTl,
and

Dk —~*y) = 7Y P(k,y) forall kycR> ~*el*
=7(7*)

where [* is the dual lattice to .



3. Magnetic Bloch Floquet transformation
Introducing

He={f € L}, (R))| T,f=f forall yeT},

loc



3. Magnetic Bloch Floquet transformation

Introducing
He={f € L}, (R))| T,f=f forall yeT},

loc

and
H, = {g € L} (R}, He) | g(k—") = 7(7")g(k) forall ~* €T},

equipped with the inner product (f,g)y, = [;,.(f(k),g(k))n.dk,
the magnetic Bloch-Floquet transformation is a unitary map

Ugp : 2(R2) = H., .



3. Magnetic Bloch Floquet transformation

Introducing
He={f € L}, (R))| T,f=f forall yeT},

loc

and
H, = {g € L} (RE, Hy) | g(k—") = 7(7%)g(k) forall ~4*€T*},
equipped with the inner product (f,g)y, = [;,.(f(k),g(k))n.dk,
the magnetic Bloch-Floquet transformation is a unitary map

Ugp : 2(R2) = H., .

The Bloch-Floquet transform I:IMB := Upr HvB Ugp of the unper-
turbed Hamiltonian Hy acts on @ € H; as

(Fhas) (k) = H(k)w(k),

where
Hi(k) = (= iV, — Ao(y) + k)* + Vi (y).
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He (k) has discrete spectrum with eigenvalues E,(k) of finite multi-
plicity that accumulate at infinity. Let
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be the eigenvalues repeated according to their multiplicity. In the
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Since Hg(k) is T-equivariant, i.e.
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and 7(+*) is unitary, the Bloch bands E,(k) are ['*-periodic functi-
ons.



3. Magnetic Bloch bands

H¢(k) has discrete spectrum with eigenvalues E,(k) of finite multi-
plicity that accumulate at infinity. Let

Ei(k) < Ex(k) < ...
be the eigenvalues repeated according to their multiplicity. In the
following, k +— E,(k) will be called the nth band function or just the
nth Bloch band.

o(Hz(k)) , o (Hi(k))

A k

k

By (k)
\/Ed( ) '
Ex(k) >©<§E2(k)
\/:El(k) V&(m
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3. Magnetic Bloch bands

o(Hy(k)) o(Hy(k))
k

‘ B4 (k)

\/;E;;(k}) .

\/;El(k) \/;El(k)
e %

Let P,(k) be the spectral projection of H¢(k) corresponding to the
eigenvalue E,(k).
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o(Hy(k)) o(Hy(k))
k

‘ B4 (k)
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Let P,(k) be the spectral projection of H¢(k) corresponding to the
eigenvalue E,(k).
Then on the subspace

Potr = { € Hr | (k) € Pa(k)Hs}

we have

(Fhs)(k) = He(k)w(k) = En(k)w(k) .
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3. Magnetic Bloch bands

o(H(k))

k

‘ B4 (k)

\/EE;;,(I;)

iEz(k)

\/E&(@
e %

A family {En(k)}nes with [ =[I-, [4] N N is called isolated, if
kienl\]jl* dist (Une/{En(k)}, Umgi{Em(k)}) > 0.

We say that {E,(k)}ne; is strictly isolated, if for

we have that

gl

= Uner Ukem= {En(k)}
inf  dist(En(k),07) > 0.

mél.keM
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Theorem

Let {E,(k)}nes be an isolated family of Bloch bands. Then there
exists an orthogonal projection ] € L(#,) such that H°Ij is a
bounded operator and
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e € (0,eq], then (x) holds for 17 being the corresponding spectral
projection of H®.



4. Results

Theorem

Let {E,(k)}nes be an isolated family of Bloch bands. Then there
exists an orthogonal projection ] € L(#,) such that H°Ij is a
bounded operator and

ITH=, NF]l| = O(™) .
Moreover, M7 is close to a pseudodifferential operator Op”(7),
M7 = Op™(7)|| = O(*), (%)
with principal symbol mo(k, r) = P;(k — A(r)).
The construction is well known and based on methods developed

by Helffer and Sjéstrand in '89 that were applied in similar ways by
Martinez, Nenciu and Sordoni in '03.
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4. Results

For simplicity we focus on one non-degenerate band E,, i.e. | = {n}.

To prove “Peierls substitution”, we need to show that l17 H°I1% is
unitarily equivalent to an operator of the form

HT = E,(k + A(ieVk)) + W(ieVi) + O(e)
acting on some suitable space H.g of functions of k.

For the case Ap = 0 this was achieved in Panati, Spohn, T. '03,
where we also computed the first order correction term to Peierls
substitution. In this case

Her = L*(T})

where T, denotes M* with opposing edges identified.
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4. Results

The key ingredient for constructing the corresponding unitary map
U : ranl, — L%(T})

n

is a trivializing section of the Bloch bundle.

Definition Let the bundle 7 : =, — T* with typical fibre H; be

given by
= = (R? x Hg)/~,
where

(kyp) ~r (K@) & Iy el K =k—" and ¢' = 1(7")p.
As a consequence, H, = L2(ET).

The Bloch bundle =, associated to the isolated Bloch band
E,(k) is the subbundle of =, given by

=n = {(k,p) € R x Hy | € Pp(k)Hs}/~. .
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4. Results

For Ag = 0 it was shown by Panati '07 that Bloch bundles are al-
ways trivializable. On the other hand, for Ag # 0 Bloch bundles are
non-trivial in general, as they have non-zero Chern numbers.

Theorem (Freund, T. '13)

To each isolated magnetic Bloch band E, there exists a unitary

U;, : ranlls, — Hy
such that H .= USNE HEME US* satisfies
HeE = E,(k + A(ieVY)) + W(ieVh) + O(e) .

Here Hy = L%(=p) contains L2-section of a line-bundle = over the
torus T* with connection V¢ determined by the Chern number § € Z
of the Bloch bundle =,,.
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4. Results

Main steps in the construction:

» Construct geometric Weyl-calculus for pseudodifferential
operators acting on sections of non-trivial vector bundles over
the torus.

Based on Widom 80, Safarov ‘98, Pflaum '98, Sharafutdinov
‘05, Hansen '10.

» Construct a “canonical” reference bundle =y with “canonical”
connection V7.

» Construct the unitary U;,.

» Compute asymptotic expansion of Hﬁff.
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5. Canonical models for non-zero Chern numbers

The dispersion of the discrete Laplacian on Z?2 is

E(k) = 2(cos(ki) + cos(ka)) = et + e Kt ek g7l
The Fourier transform of the discrete magnetic Laplacian is
HE . = oK1 4 omiK1 | oiKa | o—iKs
O:. b
and acts on L2([0,27)?) with K1 = ky + B0, and K7 = ko.

Hgof is called the Hofstadter Hamiltonian and it is given exactly
by Peierls substitution,

Hfe = E(k — A(iVk)) with A(r) = (—Bn,0).

The Hofstadter Hamiltonian is the canonical model for a
non-magnetic Bloch band perturbed by a small magnetic field B.
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5. Canonical models for non-zero Chern numbers

Taking E(k) as the dispersion of a magnetic Bloch band with Chern
number 0 € Z, our Peierls substitution yields the canoncial model
for a magnetic Bloch band perturbed by a small magnetic field B.
B = E(k— A(iV‘Z)) = o1 4 e IKT | K2 | o—iK3
with
K{ = ki + B(i0k, — 2-k1) and K§= ko
acting on

i0kyvy

[2(=y) = {f € 12 (R2) | f(k—v") = e 2n f(k) for all 4* € 271’22}.

B _ B
Note that Hy = Hp;-
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