# Peierls substitution for magnetic Bloch bands

Stefan Teufel Universität Tübingen

Spectral Days 2014, Marseille.

based on joint work with **Silvia Freund**. (arXiv:1312.5931)

• 
$$H_0 = -\frac{1}{2}\Delta_x$$
 on  $L^2(\mathbb{R}^d_x)$ 

$$0 \quad \sigma(H_0) = [0, \infty)$$

 $\vdash$   $H_{\Gamma} = -\frac{1}{2}\Delta_x + V_{\Gamma}(x)$ 

• 
$$H_0 = -\frac{1}{2}\Delta_x$$
 on  $L^2(\mathbb{R}^d_x)$ 

$$0 \quad \sigma(H_0) = [0, \infty)$$

$$0 \quad \sigma(H_{\Gamma}) = \cup_n I_n$$
Block bands

with  $V_{\Gamma}(x + \gamma) = V_{\Gamma}(x)$  for all  $x \in \mathbb{R}^d$ ,  $\gamma \in \Gamma \sim \mathbb{Z}^d$ 

$$H_{0} = -\frac{1}{2}\Delta_{x} \quad \text{on } L^{2}(\mathbb{R}^{d}_{x}) \qquad 0 \quad \sigma(H_{0}) = [0, \infty)$$

$$H_{\Gamma} = -\frac{1}{2}\Delta_{x} + V_{\Gamma}(x) \qquad 0 \quad \sigma(H_{\Gamma}) = \bigcup_{n} I_{n}$$

$$H_{\Gamma} = -\frac{1}{2}\Delta_{x} + V_{\Gamma}(x) \qquad 0 \quad \sigma(H_{\Gamma}) = \bigcup_{n} I_{n}$$

$$H_{\Gamma} = -\frac{1}{2}\Delta_{x} + V_{\Gamma}(x) \quad \text{for all } x \in \mathbb{R}^{d}, \ \gamma \in \Gamma \sim \mathbb{Z}^{d}$$

$$H_{B_{0}} = \frac{1}{2}(-i\nabla_{x} + A_{0}(x))^{2} \qquad 0 \quad \sigma(H_{B_{0}}) = \bigcup_{n} \{e_{n}\}$$

$$H_{B_{0}} = B_{0} = \text{const.}$$
Landau levels

$$H_{0} = -\frac{1}{2}\Delta_{x} \quad \text{on } L^{2}(\mathbb{R}^{d}_{x}) \qquad 0 \quad \sigma(H_{0}) = [0, \infty)$$

$$H_{\Gamma} = -\frac{1}{2}\Delta_{x} + V_{\Gamma}(x) \qquad 0 \quad \sigma(H_{\Gamma}) = \bigcup_{n} I_{n}$$

$$H_{\Gamma} = -\frac{1}{2}\Delta_{x} + V_{\Gamma}(x) \qquad Bloch bands$$
with  $V_{\Gamma}(x + \gamma) = V_{\Gamma}(x)$  for all  $x \in \mathbb{R}^{d}, \gamma \in \Gamma \sim \mathbb{Z}^{d}$ 

$$H_{B_{0}} = \frac{1}{2}(-i\nabla_{x} + A_{0}(x))^{2} \qquad 0 \quad \sigma(H_{B_{0}}) = \bigcup_{n} \{e_{n}\}$$

$$H_{D} = -\frac{1}{2}(-i\nabla_{x} + A_{0}(x))^{2} \qquad Landau levels$$

$$H_{\Gamma,B_0} = \frac{1}{2}(-i\nabla_x + A_0(x))^2 + V_{\Gamma}(x)$$

$$0 \quad \sigma(H_{\Gamma,B_0}) = \bigcup_n J_n$$
with  $\Gamma$  and  $B_0$  commensurable
Magnetic Bloch bands

► H<sub>0</sub> is unitarily equivalent by Fourier transformation to multiplication by the function <sup>1</sup>/<sub>2</sub>k<sup>2</sup> on L<sup>2</sup>(ℝ<sup>d</sup>),

 $H_0 \sim \frac{1}{2}k^2$ .

► H<sub>0</sub> is unitarily equivalent by Fourier transformation to multiplication by the function <sup>1</sup>/<sub>2</sub>k<sup>2</sup> on L<sup>2</sup>(ℝ<sup>d</sup>),

 $H_0\sim rac{1}{2}k^2$  .

•  $H_{\Gamma}$  is unitarily equivalent by a Bloch-Floquet transformation to an orthogonal sum of multiplication operators by functions  $\mathcal{E}_n(k)$  on  $L^2(\mathbb{T}^d)$ ,

$$H \sim \bigoplus_{n=1}^{\infty} \mathcal{E}_n(k)$$
 on  $\bigoplus_{n=1}^{\infty} L^2(\mathbb{T}^d)$ .

► H<sub>0</sub> is unitarily equivalent by Fourier transformation to multiplication by the function <sup>1</sup>/<sub>2</sub>k<sup>2</sup> on L<sup>2</sup>(ℝ<sup>d</sup>),

 $H_0\sim \frac{1}{2}k^2$ .

•  $H_{\Gamma}$  is unitarily equivalent by a Bloch-Floquet transformation to an orthogonal sum of multiplication operators by functions  $\mathcal{E}_n(k)$  on  $L^2(\mathbb{T}^d)$ ,

$$H \sim \bigoplus_{n=1}^{\infty} \mathcal{E}_n(k)$$
 on  $\bigoplus_{n=1}^{\infty} L^2(\mathbb{T}^d)$ .

►  $H_{\Gamma,B_0}$  is unitarily equivalent by a magnetic Bloch-Floquet transformation to an orthogonal sum of multiplication operators by functions  $E_n(k)$  on  $L^2(\Xi_n)$ ,

$$\mathcal{H}_{\Gamma,B_0}\sim \bigoplus_{n=1}^{\infty} E_n(k) \quad \text{on } \bigoplus_{n=1}^{\infty} L^2(\Xi_n).$$

What happens when we add to these operators a non-periodic potential W and a non-linear vector potential A corresponding to "small" fields?

► Fourier transformation turns  $\widetilde{H}_0 = \frac{1}{2} (-i\nabla_x + A(x))^2 + W(x)$ into the pseudo-differential operator

 $\widetilde{H}_0 \sim \frac{1}{2} (k + A(\mathrm{i} \nabla_k))^2 + W(\mathrm{i} \nabla_k).$ 

► Fourier transformation turns  $\widetilde{H}_0 = \frac{1}{2} (-i\nabla_x + A(x))^2 + W(x)$ into the pseudo-differential operator

 $\widetilde{H}_0 \sim \frac{1}{2} (k + A(\mathrm{i}\nabla_k))^2 + W(\mathrm{i}\nabla_k).$ 

Peierls substitution for Bloch bands:

The restriction of  $\widetilde{H}_{\Gamma} = \frac{1}{2}(-i\nabla_x + A(x))^2 + V_{\Gamma}(x) + W(x)$  to one of the subspaces  $L^2(\mathbb{T}^d)$  under Bloch-Floquet transformation should be close to

 $\widetilde{H}_{\Gamma}|_{L^{2}(\mathbb{T}^{d})} \sim \mathcal{E}_{n}(k + A(\mathrm{i}\nabla_{k})) + W(\mathrm{i}\nabla_{k}).$ 

► Fourier transformation turns  $\widetilde{H}_0 = \frac{1}{2} (-i\nabla_x + A(x))^2 + W(x)$ into the pseudo-differential operator

 $\widetilde{H}_0 \sim \frac{1}{2} (k + A(\mathrm{i} \nabla_k))^2 + W(\mathrm{i} \nabla_k).$ 

Peierls substitution for Bloch bands:

The restriction of  $\widetilde{H}_{\Gamma} = \frac{1}{2} (-i\nabla_x + A(x))^2 + V_{\Gamma}(x) + W(x)$  to one of the subspaces  $L^2(\mathbb{T}^d)$  under Bloch-Floquet transformation should be close to

 $\widetilde{H}_{\Gamma}|_{L^{2}(\mathbb{T}^{d})} \sim \mathcal{E}_{n}(k + A(\mathrm{i}\nabla_{k})) + W(\mathrm{i}\nabla_{k}).$ 

Peierls substitution for magnetic Bloch bands:

 $\widetilde{H}_{\Gamma} = \frac{1}{2} (-i\nabla_x + A_0(x) + A(x))^2 + V_{\Gamma}(x) + W(x)$  restricted to one of the subspaces  $L^2(\Xi_n)$  under magnetic Bloch-Floquet transformation should be close to

 $\widetilde{H}_{\Gamma}|_{L^{2}(\Xi_{n})} \sim E_{n}(k + A(\mathrm{i}\nabla_{k})) + W(\mathrm{i}\nabla_{k}).$ 

# 1. Introduction: Some mathematical literature

- Buslaev '87
- Guillot, Ralston, Trubowitz '88
- Bellisard '88, '89
- ▶ Helffer, Sjöstrand '88, '89, '90
- Nenciu '89, '91
- Gérard, Martinez, Sjöstrand '91
- ▶ Panati, Spohn, T. '03
- Dimassi, Guillot, Ralston '04
- ▶ De Nittis, Panati '10
- De Nittis, Lein '11
- Cornean, Nenciu '14

Let 
$$d=2, B_0 \in \mathbb{R}, \mathcal{B}_0 := \begin{pmatrix} 0 & -B_0 \\ B_0 & 0 \end{pmatrix}, A_0(x) := \frac{1}{2}\mathcal{B}_0 x$$

Let 
$$d = 2$$
,  $B_0 \in \mathbb{R}$ ,  $\mathcal{B}_0 := \begin{pmatrix} 0 & -B_0 \\ B_0 & 0 \end{pmatrix}$ ,  $A_0(x) := \frac{1}{2}\mathcal{B}_0 x$   
and  
 $\tilde{\Gamma} := \{a\tilde{\gamma}_1 + b\tilde{\gamma}_2 \in \mathbb{R}^2 \mid a, b \in \mathbb{Z}\}$ 

for some basis  $(\tilde{\gamma}_1, \tilde{\gamma}_2)$  of  $\mathbb{R}^2$ .

Let 
$$d = 2$$
,  $B_0 \in \mathbb{R}$ ,  $\mathcal{B}_0 := \begin{pmatrix} 0 & -B_0 \\ B_0 & 0 \end{pmatrix}$ ,  $A_0(x) := \frac{1}{2}\mathcal{B}_0 x$   
and  
 $\tilde{\Gamma} := \{a\tilde{\gamma}_1 + b\tilde{\gamma}_2 \in \mathbb{R}^2 \mid a, b \in \mathbb{Z}\}$ 

for some basis  $(\tilde{\gamma}_1, \tilde{\gamma}_2)$  of  $\mathbb{R}^2$ .

Let  $V_{\tilde{\Gamma}} : \mathbb{R}^2 \to \mathbb{R}$  be periodic with respect to  $\tilde{\Gamma}$ ,

$$V_{\widetilde{\Gamma}}(x+\gamma) = V_{\widetilde{\Gamma}}(x)$$
 for all  $\gamma \in \widetilde{\Gamma}, \, x \in \mathbb{R}^2$ ,

and relatively bounded with respect to  $(-i\nabla_x + A_0(x))^2$  with relative bound smaller than one.

Let 
$$d = 2$$
,  $B_0 \in \mathbb{R}$ ,  $\mathcal{B}_0 := \begin{pmatrix} 0 & -B_0 \\ B_0 & 0 \end{pmatrix}$ ,  $A_0(x) := \frac{1}{2}\mathcal{B}_0 x$   
and  
 $\tilde{\Gamma} := \{a\tilde{\gamma}_1 + b\tilde{\gamma}_2 \in \mathbb{R}^2 \mid a, b \in \mathbb{Z}\}$ 

for some basis  $(\tilde{\gamma}_1, \tilde{\gamma}_2)$  of  $\mathbb{R}^2$ .

Let  $V_{\tilde{\Gamma}} : \mathbb{R}^2 \to \mathbb{R}$  be periodic with respect to  $\tilde{\Gamma}$ ,

$$V_{\widetilde{\Gamma}}(x+\gamma) = V_{\widetilde{\Gamma}}(x)$$
 for all  $\gamma \in \widetilde{\Gamma}, \, x \in \mathbb{R}^2$ ,

and relatively bounded with respect to  $(-i\nabla_x + A_0(x))^2$  with relative bound smaller than one.

Then

$$H_{\mathrm{MB}} := rac{1}{2}(-\mathrm{i}
abla_{x} + A_{0}(x))^{2} + V_{\widetilde{\Gamma}}(x)$$

is self-adjoint on the magnetic Sobolev space  $H^2_{A_0}(\mathbb{R}^2)$ .

Let  $W \in C_{\rm b}^{\infty}(\mathbb{R}^2, \mathbb{R})$  and  $A \in C_{\rm b}^{\infty}(\mathbb{R}^2, \mathbb{R}^2)$ , where we choose a gauge for A such that  $A(x) \cdot \tilde{\gamma}_2 = 0$  for all  $x \in \mathbb{R}^2$ .

Let  $W \in C_{\rm b}^{\infty}(\mathbb{R}^2, \mathbb{R})$  and  $A \in C_{\rm b}^{\infty}(\mathbb{R}^2, \mathbb{R}^2)$ , where we choose a gauge for A such that  $A(x) \cdot \tilde{\gamma}_2 = 0$  for all  $x \in \mathbb{R}^2$ .

Then for  $\varepsilon \in (0, \varepsilon_0]$  the magnetic Bloch Hamiltonian perturbed by slowly varying external fields is

$$H^{\varepsilon} := \frac{1}{2} \big( -\mathrm{i} \nabla_{x} + A_{0}(x) + A(\varepsilon x) \big)^{2} + V_{\widetilde{\Gamma}}(x) + W(\varepsilon x) \,,$$

which is also self-adjoint on the magnetic Sobolev space  $H^2_{A_0}(\mathbb{R}^2)$ .

Let  $W \in C_{\rm b}^{\infty}(\mathbb{R}^2, \mathbb{R})$  and  $A \in C_{\rm b}^{\infty}(\mathbb{R}^2, \mathbb{R}^2)$ , where we choose a gauge for A such that  $A(x) \cdot \tilde{\gamma}_2 = 0$  for all  $x \in \mathbb{R}^2$ .

Then for  $\varepsilon \in (0, \varepsilon_0]$  the magnetic Bloch Hamiltonian perturbed by slowly varying external fields is

$$H^{\varepsilon} := \frac{1}{2} \big( -\mathrm{i} \nabla_{x} + A_{0}(x) + A(\varepsilon x) \big)^{2} + V_{\widetilde{\Gamma}}(x) + W(\varepsilon x) \,,$$

which is also self-adjoint on the magnetic Sobolev space  $H^2_{A_0}(\mathbb{R}^2)$ .

For  $\varepsilon \ll 1$  the external potentials vary on a scale that is large compared to the fixed lattice spacing of  $\tilde{\Gamma}$  and we are interested in the asymptotic limit  $\varepsilon \to 0$ .

Let  $W \in C_{\rm b}^{\infty}(\mathbb{R}^2, \mathbb{R})$  and  $A \in C_{\rm b}^{\infty}(\mathbb{R}^2, \mathbb{R}^2)$ , where we choose a gauge for A such that  $A(x) \cdot \tilde{\gamma}_2 = 0$  for all  $x \in \mathbb{R}^2$ .

Then for  $\varepsilon \in (0, \varepsilon_0]$  the magnetic Bloch Hamiltonian perturbed by slowly varying external fields is

$$H^{\varepsilon} := \frac{1}{2} \big( -\mathrm{i} \nabla_{x} + A_{0}(x) + A(\varepsilon x) \big)^{2} + V_{\widetilde{\Gamma}}(x) + W(\varepsilon x) \,,$$

which is also self-adjoint on the magnetic Sobolev space  $H^2_{A_0}(\mathbb{R}^2)$ .

For  $\varepsilon \ll 1$  the external potentials vary on a scale that is large compared to the fixed lattice spacing of  $\tilde{\Gamma}$  and we are interested in the asymptotic limit  $\varepsilon \to 0$ .

Note that all of the following works similarly for slowly perturbed tight binding models.

Define the magnetic translation of functions on  $\mathbb{R}^2$  by  $\widetilde{\gamma}_j$  as

$$(\widetilde{T}_{j}\psi)(x) := \mathrm{e}^{\frac{\mathrm{i}}{2}\langle x, \mathcal{B}_{0}\widetilde{\gamma}_{j}\rangle}\psi(x-\widetilde{\gamma}_{j}).$$

Define the magnetic translation of functions on  $\mathbb{R}^2$  by  $\widetilde{\gamma}_j$  as

$$(\widetilde{T}_{j}\psi)(x) := \mathrm{e}^{rac{\mathrm{i}}{2}\langle x, \mathcal{B}_{0}\widetilde{\gamma}_{j} \rangle} \psi(x - \widetilde{\gamma}_{j}) \,.$$

On  $L^2(\mathbb{R}^2)$  the magnetic translations are unitary and leave invariant the magnetic momentum operator and the periodic potential,

$$\begin{split} \widetilde{T}_{j}^{-1} \left(-\mathrm{i}\nabla - A_{0}\right) \widetilde{T}_{j} &= \left(-\mathrm{i}\nabla - A_{0}\right), \quad \widetilde{T}_{j}^{-1} V_{\widetilde{\mathsf{F}}} \ \widetilde{T}_{j} = V_{\widetilde{\mathsf{F}}} \\ \text{us} \qquad \widetilde{T}_{j}^{-1} H_{\mathrm{MB}} \ \widetilde{T}_{j} &= H_{\mathrm{MB}}. \end{split}$$

and thus

Define the magnetic translation of functions on  $\mathbb{R}^2$  by  $\widetilde{\gamma}_j$  as

$$(\widetilde{T}_{j}\psi)(x) := \mathrm{e}^{rac{\mathrm{i}}{2}\langle x, \mathcal{B}_{0}\widetilde{\gamma}_{j} \rangle}\psi(x - \widetilde{\gamma}_{j}) \,.$$

On  $L^2(\mathbb{R}^2)$  the magnetic translations are unitary and leave invariant the magnetic momentum operator and the periodic potential,

$$\begin{split} \widetilde{T}_{j}^{-1} \left(-\mathrm{i}\nabla - A_{0}\right) \widetilde{T}_{j} &= \left(-\mathrm{i}\nabla - A_{0}\right), \quad \widetilde{T}_{j}^{-1} V_{\widetilde{\Gamma}} \ \widetilde{T}_{j} = V_{\widetilde{\Gamma}} \\ \text{us} \qquad \widetilde{T}_{j}^{-1} H_{\mathrm{MB}} \ \widetilde{T}_{j} &= H_{\mathrm{MB}}. \end{split}$$

and thus

Because of

$$\widetilde{T}_1 \widetilde{T}_2 = \mathrm{e}^{\mathrm{i} \langle \widetilde{\gamma}_2, \mathcal{B}_0 \widetilde{\gamma}_1 \rangle} \widetilde{T}_2 \widetilde{T}_1 \,,$$

we only obtain a unitary representation of  $\Gamma$  if  $\langle \tilde{\gamma}_2, \mathcal{B}_0 \tilde{\gamma}_1 \rangle \in 2\pi \mathbb{Z}$ .

Define the magnetic translation of functions on  $\mathbb{R}^2$  by  $\tilde{\gamma}_i$  as

$$(\widetilde{T}_{j}\psi)(x) := \mathrm{e}^{\frac{\mathrm{i}}{2}\langle x, \mathcal{B}_{0}\widetilde{\gamma}_{j}\rangle}\psi(x-\widetilde{\gamma}_{j}).$$

On  $L^{2}(\mathbb{R}^{2})$  the magnetic translations are unitary and leave invariant the magnetic momentum operator and the periodic potential,

$$\begin{split} \widetilde{T}_{j}^{-1} \left(-\mathrm{i}\nabla - A_{0}\right) \widetilde{T}_{j} &= \left(-\mathrm{i}\nabla - A_{0}\right), \quad \widetilde{T}_{j}^{-1} V_{\widetilde{\Gamma}} \widetilde{T}_{j} = V_{\widetilde{\Gamma}} \\ \mathrm{is} \qquad \widetilde{T}_{i}^{-1} H_{\mathrm{MB}} \widetilde{T}_{j} &= H_{\mathrm{MB}}. \end{split}$$

and thu

Because of

$$\widetilde{T}_1 \widetilde{T}_2 = \mathrm{e}^{\mathrm{i} \langle \widetilde{\gamma}_2, \mathcal{B}_0 \widetilde{\gamma}_1 \rangle} \widetilde{T}_2 \widetilde{T}_1 \,,$$

we only obtain a unitary representation of  $\widetilde{\Gamma}$  if  $\langle \widetilde{\gamma}_2, \mathcal{B}_0 \widetilde{\gamma}_1 \rangle \in 2\pi \mathbb{Z}$ .

Here  $\langle \widetilde{\gamma}_2, \mathcal{B}_0 \widetilde{\gamma}_1 \rangle = B_0 |M|$  is the magnetic flux through the unit cell *M* of the lattice  $\Gamma$  with volume  $|M| = \tilde{\gamma}_1 \wedge \tilde{\gamma}_2$ .

Let the flux of  $B_0$  per unit cell satisfy  $\langle \widetilde{\gamma}_2, \mathcal{B}_0 \widetilde{\gamma}_1 \rangle = 2\pi \frac{p}{q} \in 2\pi \mathbb{Q}$ .

Let the flux of  $B_0$  per unit cell satisfy  $\langle \widetilde{\gamma}_2, \mathcal{B}_0 \widetilde{\gamma}_1 \rangle = 2\pi \frac{p}{q} \in 2\pi \mathbb{Q}$ .

By passing to the sublattice  $\Gamma \subset \tilde{\Gamma}$  spanned by the basis  $(\gamma_1, \gamma_2) := (q\tilde{\gamma}_1, \tilde{\gamma}_2)$  and defining the magnetic translations  $T_1$ ,  $T_2$  analogously, we achieve  $\langle \gamma_2, \mathcal{B}_0 \gamma_1 \rangle = 2\pi p \in 2\pi \mathbb{Z}$ .

Let the flux of  $B_0$  per unit cell satisfy  $\langle \widetilde{\gamma}_2, \mathcal{B}_0 \widetilde{\gamma}_1 \rangle = 2\pi \frac{p}{q} \in 2\pi \mathbb{Q}$ .

By passing to the sublattice  $\Gamma \subset \tilde{\Gamma}$  spanned by the basis  $(\gamma_1, \gamma_2) := (q\tilde{\gamma}_1, \tilde{\gamma}_2)$  and defining the magnetic translations  $T_1$ ,  $T_2$  analogously, we achieve  $\langle \gamma_2, \mathcal{B}_0 \gamma_1 \rangle = 2\pi p \in 2\pi \mathbb{Z}$ . Hence

 $T: \Gamma \to \mathcal{L}(L^2(\mathbb{R}^2)), \quad \gamma = n_1 \gamma_1 + n_2 \gamma_2 \quad \mapsto \quad T_\gamma := T_1^{n_1} T_2^{n_2}$ 

is a unitary representation of  $\Gamma$  on  $L^2(\mathbb{R}^2)$  satisfying

 $T_{\gamma}^{-1}H_{\rm MB}T_{\gamma}=H_{\rm MB}$ 

for all  $\gamma \in \Gamma$ .

For  $\psi \in C_0^\infty(\mathbb{R}^2)$  the magnetic Bloch-Floquet transformation is defined by

$$(\mathcal{U}_{\mathrm{BF}}\psi)(k,y):=\mathrm{e}^{-\mathrm{i}y\cdot k}\sum_{\gamma\in\Gamma}\mathrm{e}^{\mathrm{i}\gamma\cdot k}(\mathcal{T}_{\gamma}\psi)(y)\,.$$

For  $\psi \in C_0^\infty(\mathbb{R}^2)$  the magnetic Bloch-Floquet transformation is defined by

$$(\mathcal{U}_{\mathrm{BF}}\psi)(k,y):=\mathrm{e}^{-\mathrm{i}y\cdot k}\sum_{\gamma\in\Gamma}\mathrm{e}^{\mathrm{i}\gamma\cdot k}(T_{\gamma}\psi)(y)\,.$$

 $\hat{\psi}:=\mathcal{U}_{\mathrm{BF}}\psi$  satisfies as a function on  $\mathbb{R}^2_k imes\mathbb{R}^2_y$ 

$$\mathcal{T}_\gamma \hat{\psi}(k,\cdot) = \hat{\psi}(k,\cdot) \quad ext{for all} \;\; k \in \mathbb{R}^2 \,, \; \gamma \in \mathsf{F} \,,$$

and

$$\hat{\psi}(k-\gamma^*,y) = \underbrace{\mathrm{e}^{\mathrm{i}\gamma^*\cdot y}}_{=: au(\gamma^*)} \hat{\psi}(k,y) \quad \text{for all} \ \ k,y \in \mathbb{R}^2 \ , \ \gamma^* \in \Gamma^*$$

where  $\Gamma^*$  is the dual lattice to  $\Gamma$ .

Introducing

 $\mathcal{H}_{\mathrm{f}} := \left\{ f \in L^2_{\mathrm{loc}}(\mathbb{R}^2_y) \, | \, \mathcal{T}_{\gamma} f = f \quad \text{for all} \quad \gamma \in \Gamma \right\} \,,$ 

Introducing

$$\mathcal{H}_{\mathrm{f}} := \left\{ f \in L^2_{\mathrm{loc}}(\mathbb{R}^2_y) \,|\; T_\gamma f = f \quad \text{for all} \quad \gamma \in \Gamma \right\} \,,$$

and

 $\begin{aligned} \mathcal{H}_{\tau} &:= \{g \in L^2_{\rm loc}(\mathbb{R}^2_k, \mathcal{H}_{\rm f}) \,|\, g(k - \gamma^*) = \tau(\gamma^*)g(k) \quad \text{for all} \quad \gamma^* \in \Gamma^* \}\,, \\ \text{equipped with the inner product } \langle f, g \rangle_{\mathcal{H}_{\tau}} \,=\, \int_{M^*} \langle f(k), g(k) \rangle_{\mathcal{H}_{\rm f}} \mathrm{d}k, \\ \text{the magnetic Bloch-Floquet transformation is a unitary map} \\ \mathcal{U}_{\rm BF} : L^2(\mathbb{R}^2_{\star}) \to \mathcal{H}_{\tau}\,. \end{aligned}$ 

Introducing

$$\mathcal{H}_{\mathrm{f}} := \left\{ f \in L^2_{\mathrm{loc}}(\mathbb{R}^2_y) \,|\; T_\gamma f = f \quad \text{for all} \quad \gamma \in \Gamma \right\} \,,$$

and

 $\begin{aligned} \mathcal{H}_{\tau} &:= \{ g \in L^2_{\mathrm{loc}}(\mathbb{R}^2_k, \mathcal{H}_{\mathrm{f}}) \, | \, g(k - \gamma^*) = \tau(\gamma^*) g(k) \quad \text{for all} \quad \gamma^* \in \Gamma^* \} \,, \\ \text{equipped with the inner product } \langle f, g \rangle_{\mathcal{H}_{\tau}} \, = \, \int_{M^*} \langle f(k), g(k) \rangle_{\mathcal{H}_{\mathrm{f}}} \mathrm{d}k, \\ \text{the magnetic Bloch-Floquet transformation is a unitary map} \end{aligned}$ 

$$\mathcal{U}_{\mathrm{BF}}: L^2(\mathbb{R}^2_x) o \mathcal{H}_{ au}$$
 .

The Bloch-Floquet transform  $\hat{H}_{MB} := \mathcal{U}_{BF} H_{MB} \mathcal{U}_{BF}^*$  of the unperturbed Hamiltonian  $H_{MB}$  acts on  $\psi \in \mathcal{H}_{\tau}$  as

$$(\hat{H}_{\mathrm{MB}}\psi)(k) = H_{\mathrm{f}}(k)\psi(k),$$

where

$$H_{\mathrm{f}}(k) := \frac{1}{2} \big( -\mathrm{i} \nabla_{y} - A_{0}(y) + k \big)^{2} + V_{\Gamma}(y) \,.$$

# 3. Magnetic Bloch bands

 $H_{\rm f}(k)$  has discrete spectrum with eigenvalues  $E_n(k)$  of finite multiplicity that accumulate at infinity. Let

 $E_1(k) \leq E_2(k) \leq \ldots$ 

be the eigenvalues repeated according to their multiplicity. In the following,  $k \mapsto E_n(k)$  will be called the *n*th band function or just the *n*th Bloch band.

## 3. Magnetic Bloch bands

 $H_{\rm f}(k)$  has discrete spectrum with eigenvalues  $E_n(k)$  of finite multiplicity that accumulate at infinity. Let

 $E_1(k) \leq E_2(k) \leq \ldots$ 

be the eigenvalues repeated according to their multiplicity. In the following,  $k \mapsto E_n(k)$  will be called the *n*th band function or just the *n*th Bloch band.

Since  $H_{\rm f}(k)$  is  $\tau$ -equivariant, i.e.

$$egin{split} \mathsf{H}_{\mathrm{f}}(k-\gamma^{*}) = au(\gamma^{*})\,\mathsf{H}_{\mathrm{f}}(k)\, au(\gamma^{*})^{-1}\,, \end{split}$$

and  $\tau(\gamma^*)$  is unitary, the Bloch bands  $E_n(k)$  are  $\Gamma^*$ -periodic functions.

### 3. Magnetic Bloch bands

 $H_{\rm f}(k)$  has discrete spectrum with eigenvalues  $E_n(k)$  of finite multiplicity that accumulate at infinity. Let

 $E_1(k) \leq E_2(k) \leq \ldots$ 

be the eigenvalues repeated according to their multiplicity. In the following,  $k \mapsto E_n(k)$  will be called the *n*th band function or just the *n*th Bloch band.



# 3. Magnetic Bloch bands: Hofstadter Hamiltonian



3. Magnetic Bloch bands: Hofstadter Hamiltonian





Let  $P_n(k)$  be the spectral projection of  $H_f(k)$  corresponding to the eigenvalue  $E_n(k)$ .



Let  $P_n(k)$  be the spectral projection of  $H_f(k)$  corresponding to the eigenvalue  $E_n(k)$ . Then on the subspace

$$P_n\mathcal{H}_{\tau} := \{\psi \in \mathcal{H}_{\tau} \mid \psi(k) \in P_n(k)\mathcal{H}_{\mathrm{f}}\}$$

we have

$$(\hat{H}_{\mathrm{MB}}\psi)(k) = H_{\mathrm{f}}(k)\psi(k) = E_n(k)\psi(k).$$



A family  $\{E_n(k)\}_{n \in I}$  with  $I = [I_-, I_+] \cap \mathbb{N}$  is called isolated, if  $\inf_{k \in M^*} \operatorname{dist} \left( \bigcup_{n \in I} \{E_n(k)\}, \bigcup_{m \notin I} \{E_m(k)\} \right) > 0.$ 

3. Magnetic Bloch bands  $\sigma(H_{f}(k)))$   $E_{4}(k)$   $E_{3}(k)$   $E_{2}(k)$   $E_{1}(k)$   $M^{*}$  k  $M^{*}$  K

A family  $\{E_n(k)\}_{n \in I}$  with  $I = [I_-, I_+] \cap \mathbb{N}$  is called isolated, if  $\inf_{k \in M^*} \operatorname{dist} (\bigcup_{n \in I} \{E_n(k)\}, \bigcup_{m \notin I} \{E_m(k)\}) > 0.$ We say that  $\{E_n(k)\}_{n \in I}$  is strictly isolated, if for  $\sigma_I := \overline{\bigcup_{n \in I} \bigcup_{k \in M^*} \{E_n(k)\}}$ we have that  $\inf_{m \notin I, k \in M^*} \operatorname{dist}(E_m(k), \sigma_I) > 0.$ 

#### **Theorem**

Let  $\{E_n(k)\}_{n\in I}$  be an isolated family of Bloch bands. Then there exists an orthogonal projection  $\Pi_I^{\varepsilon} \in \mathcal{L}(\mathcal{H}_{\tau})$  such that  $H^{\varepsilon} \Pi_I^{\varepsilon}$  is a bounded operator and

 $\|[H^{\varepsilon},\Pi_{I}^{\varepsilon}]\| = \mathcal{O}(\varepsilon^{\infty}).$ 

#### **Theorem**

Let  $\{E_n(k)\}_{n\in I}$  be an isolated family of Bloch bands. Then there exists an orthogonal projection  $\Pi_I^{\varepsilon} \in \mathcal{L}(\mathcal{H}_{\tau})$  such that  $H^{\varepsilon}\Pi_I^{\varepsilon}$  is a bounded operator and

 $\|[H^{\varepsilon},\Pi_{I}^{\varepsilon}]\| = \mathcal{O}(\varepsilon^{\infty}).$ 

Moreover,  $\Pi_{I}^{\varepsilon}$  is close to a pseudodifferential operator  $\operatorname{Op}^{\tau}(\pi)$ ,

$$\|\Pi_I^{\varepsilon} - \operatorname{Op}^{\tau}(\pi)\| = \mathcal{O}(\varepsilon^{\infty}), \qquad (*)$$

with principal symbol  $\pi_0(k, r) = P_I(k - A(r))$ .

#### **Theorem**

Let  $\{E_n(k)\}_{n\in I}$  be an isolated family of Bloch bands. Then there exists an orthogonal projection  $\Pi_I^{\varepsilon} \in \mathcal{L}(\mathcal{H}_{\tau})$  such that  $H^{\varepsilon}\Pi_I^{\varepsilon}$  is a bounded operator and

 $\|[H^{\varepsilon},\Pi_{I}^{\varepsilon}]\|=\mathcal{O}(\varepsilon^{\infty}).$ 

Moreover,  $\Pi_I^{\varepsilon}$  is close to a pseudodifferential operator  $\operatorname{Op}^{\tau}(\pi)$ ,

$$\|\Pi_I^{\varepsilon} - \operatorname{Op}^{\tau}(\pi)\| = \mathcal{O}(\varepsilon^{\infty}), \qquad (*)$$

with principal symbol  $\pi_0(k, r) = P_I(k - A(r))$ .

If  $\{E_n(k)\}_{n \in I}$  is strictly isolated and if the gaps remain open for  $\varepsilon \in (0, \varepsilon_0]$ , then (\*) holds for  $\Pi_I^{\varepsilon}$  being the corresponding spectral projection of  $H^{\varepsilon}$ .

#### **Theorem**

Let  $\{E_n(k)\}_{n\in I}$  be an isolated family of Bloch bands. Then there exists an orthogonal projection  $\Pi_I^{\varepsilon} \in \mathcal{L}(\mathcal{H}_{\tau})$  such that  $H^{\varepsilon}\Pi_I^{\varepsilon}$  is a bounded operator and

 $\|[H^{\varepsilon},\Pi_{I}^{\varepsilon}]\|=\mathcal{O}(\varepsilon^{\infty}).$ 

Moreover,  $\Pi_I^{\varepsilon}$  is close to a pseudodifferential operator  $\operatorname{Op}^{\tau}(\pi)$ ,

$$\|\Pi_I^{\varepsilon} - \operatorname{Op}^{\tau}(\pi)\| = \mathcal{O}(\varepsilon^{\infty}), \qquad (*)$$

with principal symbol  $\pi_0(k, r) = P_I(k - A(r))$ .

The construction is well known and based on methods developed by *Helffer and Sjöstrand* in '89 that were applied in similar ways by *Martinez, Nenciu and Sordoni* in '03.

For simplicity we focus on one non-degenerate band  $E_n$ , i.e.  $I = \{n\}$ .

For simplicity we focus on one non-degenerate band  $E_n$ , i.e.  $I = \{n\}$ .

To prove "Peierls substitution", we need to show that  $\prod_n^{\varepsilon} H^{\varepsilon} \prod_n^{\varepsilon}$  is unitarily equivalent to an operator of the form

 $H_n^{\text{eff}} = E_n(k + A(i\varepsilon \nabla_k)) + W(i\varepsilon \nabla_k) + \mathcal{O}(\varepsilon)$ 

acting on some suitable space  $\mathcal{H}_{\text{eff}}$  of functions of k.

For simplicity we focus on one non-degenerate band  $E_n$ , i.e.  $I = \{n\}$ .

To prove "Peierls substitution", we need to show that  $\prod_n^{\varepsilon} H^{\varepsilon} \prod_n^{\varepsilon}$  is unitarily equivalent to an operator of the form

 $H_n^{\text{eff}} = E_n(k + A(i\varepsilon\nabla_k)) + W(i\varepsilon\nabla_k) + \mathcal{O}(\varepsilon)$ 

acting on some suitable space  $\mathcal{H}_{\text{eff}}$  of functions of k.

For the case  $A_0 = 0$  this was achieved in *Panati, Spohn, T.* '03, where we also computed the first order correction term to Peierls substitution. In this case

$$\mathcal{H}_{\mathrm{eff}} = L^2(\mathbb{T}^*_k)$$

where  $\mathbb{T}_{k}^{*}$  denotes  $M^{*}$  with opposing edges identified.

The key ingredient for constructing the corresponding unitary map  $U_n^\varepsilon:\mathrm{ran}\Pi_n^\varepsilon\to L^2(\mathbb{T}_k^*)$ 

is a trivializing section of the Bloch bundle.

The key ingredient for constructing the corresponding unitary map  $U_n^\varepsilon:\mathrm{ran}\Pi_n^\varepsilon\to L^2(\mathbb{T}_k^*)$ 

is a trivializing section of the Bloch bundle.

**Definition** Let the bundle  $\pi : \Xi_{\tau} \to \mathbb{T}^*$  with typical fibre  $\mathcal{H}_f$  be given by  $\Xi_{\tau} := (\mathbb{R}^2 \times \mathcal{H}_f)/_{\sim_{\tau}},$ 

where

 $(k, \varphi) \sim_{\tau} (k', \varphi') \; :\Leftrightarrow \; \exists \gamma^* \in \Gamma^* : \; k' = k - \gamma^* \; \text{and} \; \varphi' = \tau(\gamma^*) \varphi \,.$ 

As a consequence,  $\mathcal{H}_{\tau} = L^2(\Xi_{\tau})$ .

The key ingredient for constructing the corresponding unitary map  $U_n^\varepsilon:\mathrm{ran}\Pi_n^\varepsilon\to L^2(\mathbb{T}_k^*)$ 

is a trivializing section of the Bloch bundle.

**Definition** Let the bundle  $\pi : \Xi_{\tau} \to \mathbb{T}^*$  with typical fibre  $\mathcal{H}_{f}$  be given by

$$\Xi_{ au} := (\mathbb{R}^2 imes \mathcal{H}_{\mathrm{f}})/_{\sim_{ au}},$$

where

$$(k,\varphi)\sim_\tau (k',\varphi') \ :\Leftrightarrow \ \exists \gamma^*\in \mathsf{\Gamma}^*: \ k'=k-\gamma^* \ \text{and} \ \varphi'=\tau(\gamma^*)\varphi\,.$$

As a consequence,  $\mathcal{H}_{\tau} = L^2(\Xi_{\tau})$ .

The **Bloch bundle**  $\equiv_n$  associated to the isolated Bloch band  $E_n(k)$  is the subbundle of  $\equiv_{\tau}$  given by

 $\Xi_n := \{ (k, \varphi) \in \mathbb{R}^2 \times \mathcal{H}_{\mathrm{f}} \, | \, \varphi \in \mathcal{P}_n(k) \mathcal{H}_{\mathrm{f}} \} /_{\sim_{\tau}}.$ 

For  $A_0 = 0$  it was shown by **Panati** '07 that Bloch bundles are always trivializable. On the other hand, for  $A_0 \neq 0$  Bloch bundles are non-trivial in general, as they have non-zero Chern numbers.

For  $A_0 = 0$  it was shown by **Panati** '07 that Bloch bundles are always trivializable. On the other hand, for  $A_0 \neq 0$  Bloch bundles are non-trivial in general, as they have non-zero Chern numbers.

#### Theorem (Freund, T. '13)

To each isolated magnetic Bloch band  $E_n$  there exists a unitary

 $U_n^{\varepsilon}: \operatorname{ran} \Pi_n^{\varepsilon} \to \mathcal{H}_{\theta}$ 

such that  $H_n^{\text{eff}} := U_n^{\varepsilon} \Pi_n^{\varepsilon} H^{\varepsilon} \Pi_n^{\varepsilon} U_n^{\varepsilon*}$  satisfies

 $H_n^{\text{eff}} = E_n(k + A(i\varepsilon \nabla_k^{\theta})) + W(i\varepsilon \nabla_k^{\theta}) + \mathcal{O}(\varepsilon).$ 

Here  $\mathcal{H}_{\theta} = L^2(\Xi_{\theta})$  contains  $L^2$ -section of a line-bundle  $\Xi_{\theta}$  over the torus  $\mathbb{T}^*$  with connection  $\nabla^{\theta}$  determined by the Chern number  $\theta \in \mathbb{Z}$  of the Bloch bundle  $\Xi_n$ .

Main steps in the construction:

 Construct geometric Weyl-calculus for pseudodifferential operators acting on sections of non-trivial vector bundles over the torus.

Based on Widom '80, Safarov '98, Pflaum '98, Sharafutdinov '05, Hansen '10.

Main steps in the construction:

 Construct geometric Weyl-calculus for pseudodifferential operators acting on sections of non-trivial vector bundles over the torus.

Based on Widom '80, Safarov '98, Pflaum '98, Sharafutdinov '05, Hansen '10.

Construct a "canonical" reference bundle Ξ<sub>θ</sub> with "canonical" connection ∇<sup>θ</sup>.

Main steps in the construction:

 Construct geometric Weyl-calculus for pseudodifferential operators acting on sections of non-trivial vector bundles over the torus.

Based on Widom '80, Safarov '98, Pflaum '98, Sharafutdinov '05, Hansen '10.

- Construct a "canonical" reference bundle Ξ<sub>θ</sub> with "canonical" connection ∇<sup>θ</sup>.
- Construct the unitary  $U_n^{\varepsilon}$ .

Main steps in the construction:

 Construct geometric Weyl-calculus for pseudodifferential operators acting on sections of non-trivial vector bundles over the torus.

Based on Widom '80, Safarov '98, Pflaum '98, Sharafutdinov '05, Hansen '10.

- Construct a "canonical" reference bundle Ξ<sub>θ</sub> with "canonical" connection ∇<sup>θ</sup>.
- Construct the unitary  $U_n^{\varepsilon}$ .
- Compute asymptotic expansion of  $H_n^{\text{eff}}$ .

The dispersion of the discrete Laplacian on  $\mathbb{Z}^2$  is

 $E(k) = 2(\cos(k_1) + \cos(k_2)) = e^{ik_1} + e^{-ik_1} + e^{ik_2} + e^{-ik_2}.$ 

The dispersion of the discrete Laplacian on  $\mathbb{Z}^2$  is

 $E(k) = 2(\cos(k_1) + \cos(k_2)) = e^{ik_1} + e^{-ik_1} + e^{ik_2} + e^{-ik_2}.$ 

The Fourier transform of the discrete magnetic Laplacian is

$$\mathcal{H}_{\mathrm{Hof}}^{\mathcal{B}} = \mathrm{e}^{\mathrm{i}\mathcal{K}_{1}} + \mathrm{e}^{-\mathrm{i}\mathcal{K}_{1}} + \mathrm{e}^{\mathrm{i}\mathcal{K}_{2}} + \mathrm{e}^{-\mathrm{i}\mathcal{K}_{2}},$$

and acts on  $L^2([0, 2\pi)^2)$  with  $\mathcal{K}_1 = k_1 + iB\partial_{k_2}$  and  $\mathcal{K}_2 = k_2$ .

The dispersion of the discrete Laplacian on  $\mathbb{Z}^2$  is

 $E(k) = 2(\cos(k_1) + \cos(k_2)) = e^{ik_1} + e^{-ik_1} + e^{ik_2} + e^{-ik_2}.$ 

The Fourier transform of the discrete magnetic Laplacian is

$$\mathcal{H}_{\mathrm{Hof}}^{\mathcal{B}} = \mathrm{e}^{\mathrm{i}\mathcal{K}_{1}} + \mathrm{e}^{-\mathrm{i}\mathcal{K}_{1}} + \mathrm{e}^{\mathrm{i}\mathcal{K}_{2}} + \mathrm{e}^{-\mathrm{i}\mathcal{K}_{2}},$$

and acts on  $L^2([0, 2\pi)^2)$  with  $\mathcal{K}_1 = k_1 + iB\partial_{k_2}$  and  $\mathcal{K}_2 = k_2$ .

 $H_{\text{Hof}}^{B}$  is called the **Hofstadter Hamiltonian** and it is given exactly by Peierls substitution,

 $H_{\mathrm{Hof}}^{B} = E(k - A(\mathrm{i} \nabla_{k}))$  with  $A(r) = (-Br_{2}, 0)$ .

The dispersion of the discrete Laplacian on  $\mathbb{Z}^2$  is

 $E(k) = 2(\cos(k_1) + \cos(k_2)) = e^{ik_1} + e^{-ik_1} + e^{ik_2} + e^{-ik_2}.$ 

The Fourier transform of the discrete magnetic Laplacian is

$$\mathcal{H}_{\mathrm{Hof}}^{\mathcal{B}} = \mathrm{e}^{\mathrm{i}\mathcal{K}_{1}} + \mathrm{e}^{-\mathrm{i}\mathcal{K}_{1}} + \mathrm{e}^{\mathrm{i}\mathcal{K}_{2}} + \mathrm{e}^{-\mathrm{i}\mathcal{K}_{2}},$$

and acts on  $L^2([0, 2\pi)^2)$  with  $\mathcal{K}_1 = k_1 + iB\partial_{k_2}$  and  $\mathcal{K}_2 = k_2$ .

 $H^B_{Hof}$  is called the **Hofstadter Hamiltonian** and it is given exactly by Peierls substitution,

 $H_{\mathrm{Hof}}^{B} = E(k - A(\mathrm{i}\nabla_{k}))$  with  $A(r) = (-Br_{2}, 0)$ .

The Hofstadter Hamiltonian is the **canonical model for a non-magnetic Bloch band** perturbed by a small magnetic field *B*.

Taking E(k) as the dispersion of a magnetic Bloch band with Chern number  $\theta \in \mathbb{Z}$ , our Peierls substitution yields the **canoncial model** for a magnetic Bloch band perturbed by a small magnetic field *B*.

$$H^{B}_{\theta} := E(k - A(\mathrm{i}\nabla^{\theta}_{k})) = \mathrm{e}^{\mathrm{i}\mathcal{K}^{\theta}_{1}} + \mathrm{e}^{-\mathrm{i}\mathcal{K}^{\theta}_{1}} + \mathrm{e}^{\mathrm{i}\mathcal{K}^{\theta}_{2}} + \mathrm{e}^{-\mathrm{i}\mathcal{K}^{\theta}_{2}}$$

Taking E(k) as the dispersion of a magnetic Bloch band with Chern number  $\theta \in \mathbb{Z}$ , our Peierls substitution yields the **canoncial model** for a magnetic Bloch band perturbed by a small magnetic field *B*.

$$\mathcal{H}^{\mathcal{B}}_{ heta} := \mathcal{E}ig(k - \mathcal{A}(\mathrm{i}
abla^{ heta}_k)ig) = \mathrm{e}^{\mathrm{i}\mathcal{K}^{ heta}_1} + \mathrm{e}^{-\mathrm{i}\mathcal{K}^{ heta}_1} + \mathrm{e}^{\mathrm{i}\mathcal{K}^{ heta}_2} + \mathrm{e}^{-\mathrm{i}\mathcal{K}^{ heta}_2}$$

with

$$\mathcal{K}_1^{ heta} = k_1 + B(\mathrm{i}\partial_{k_2} - rac{ heta}{2\pi}k_1)$$
 and  $\mathcal{K}_2^{ heta} = k_2$ 

acting on

$$L^{2}(\Xi_{\theta}) = \left\{ f \in L^{2}_{\mathrm{loc}}(\mathbb{R}^{2}) \, \Big| \, f(k - \gamma^{*}) = \mathrm{e}^{\frac{\mathrm{i}\theta k_{2}\gamma_{1}^{*}}{2\pi}} f(k) \text{ for all } \gamma^{*} \in 2\pi\mathbb{Z}^{2} \right\}.$$

Taking E(k) as the dispersion of a magnetic Bloch band with Chern number  $\theta \in \mathbb{Z}$ , our Peierls substitution yields the **canoncial model** for a magnetic Bloch band perturbed by a small magnetic field *B*.

$$\mathcal{H}^{\mathcal{B}}_{ heta} := \mathcal{E}ig(k - \mathcal{A}(\mathrm{i}
abla^{ heta}_k)ig) = \mathrm{e}^{\mathrm{i}\mathcal{K}^{ heta}_1} + \mathrm{e}^{-\mathrm{i}\mathcal{K}^{ heta}_1} + \mathrm{e}^{\mathrm{i}\mathcal{K}^{ heta}_2} + \mathrm{e}^{-\mathrm{i}\mathcal{K}^{ heta}_2}$$

with

$$\mathcal{K}_1^{ heta} = k_1 + B(\mathrm{i}\partial_{k_2} - rac{ heta}{2\pi}k_1)$$
 and  $\mathcal{K}_2^{ heta} = k_2$ 

acting on

$$L^{2}(\Xi_{\theta}) = \left\{ f \in L^{2}_{\mathrm{loc}}(\mathbb{R}^{2}) \, \Big| \, f(k - \gamma^{*}) = \mathrm{e}^{\frac{\mathrm{i}\theta k_{2}\gamma_{1}^{*}}{2\pi}} f(k) \text{ for all } \gamma^{*} \in 2\pi\mathbb{Z}^{2} \right\}.$$

Note that  $H_0^B \equiv H_{\text{Hof}}^B$ .









5. Colored butterflies for  $H^B_{\theta}$  ?



5. Colored butterflies for  $H^B_{\theta}$  ?

