Peierls substitution
 for magnetic Bloch bands

Stefan Teufel
Universität Tübingen

Spectral Days 2014, Marseille.

based on joint work with Silvia Freund.
(arXiv:1312.5931)

1. Introduction: Band spectra

- $H_{0}=-\frac{1}{2} \Delta_{x}$ on $L^{2}\left(\mathbb{R}_{x}^{d}\right)$ $\xrightarrow{0} \boldsymbol{\square}$

1. Introduction: Band spectra

- $H_{0}=-\frac{1}{2} \Delta_{x} \quad$ on $L^{2}\left(\mathbb{R}_{\chi}^{d}\right)$ $\xrightarrow{0} \sigma\left(H_{0}\right)=[0, \infty)$
- $H_{\Gamma}=-\frac{1}{2} \Delta_{x}+V_{\Gamma}(x)$

with $V_{\Gamma}(x+\gamma)=V_{\Gamma}(x)$ for all $x \in \mathbb{R}^{d}, \gamma \in \Gamma \sim \mathbb{Z}^{d}$

1. Introduction: Band spectra

$\begin{array}{ll}\text { - } H_{0}=-\frac{1}{2} \Delta_{x} \text { on } L^{2}\left(\mathbb{R}_{x}^{d}\right) & \xrightarrow{0} \sigma\left(H_{0}\right)=[0, \infty) \\ \text { - } H_{\Gamma}=-\frac{1}{2} \Delta_{x}+V_{\Gamma}(x) & \xrightarrow[\text { Bloch bands }]{0} \sigma\left(H_{\Gamma}\right)=\cup_{n} I_{n}\end{array}$
with $V_{\Gamma}(x+\gamma)=V_{\Gamma}(x)$ for all $x \in \mathbb{R}^{d}, \gamma \in \Gamma \sim \mathbb{Z}^{d}$

- $H_{B_{0}}=\frac{1}{2}\left(-\mathrm{i} \nabla_{X}+A_{0}(x)\right)^{2}$ with $\mathrm{d} A_{0}=B_{0}=$ const.

Landau levels

1. Introduction: Band spectra

- $H_{0}=-\frac{1}{2} \Delta_{x}$ on $L^{2}\left(\mathbb{R}_{x}^{d}\right)$

$$
0 \quad \sigma\left(H_{0}\right)=[0, \infty)
$$

- $H_{\Gamma}=-\frac{1}{2} \Delta_{x}+V_{\Gamma}(x)$

Bloch bands
with $V_{\Gamma}(x+\gamma)=V_{\Gamma}(x)$ for all $x \in \mathbb{R}^{d}, \gamma \in \Gamma \sim \mathbb{Z}^{d}$

- $H_{B_{0}}=\frac{1}{2}\left(-i \nabla_{x}+A_{0}(x)\right)^{2}$ with $\mathrm{d} A_{0}=B_{0}=$ const.

Landau levels

- $H_{\Gamma, B_{0}}=\frac{1}{2}\left(-\mathrm{i} \nabla_{x}+A_{0}(x)\right)^{2}+V_{\Gamma}(x)$

with Γ and B_{0} commensurable
Magnetic Bloch bands

1. Introduction: Peierls substitution

- H_{0} is unitarily equivalent by Fourier transformation to multiplication by the function $\frac{1}{2} k^{2}$ on $L^{2}\left(\mathbb{R}^{d}\right)$,

$$
H_{0} \sim \frac{1}{2} k^{2} .
$$

1. Introduction: Peierls substitution

- H_{0} is unitarily equivalent by Fourier transformation to multiplication by the function $\frac{1}{2} k^{2}$ on $L^{2}\left(\mathbb{R}^{d}\right)$,

$$
H_{0} \sim \frac{1}{2} k^{2} .
$$

- H_{Γ} is unitarily equivalent by a Bloch-Floquet transformation to an orthogonal sum of multiplication operators by functions $\mathcal{E}_{n}(k)$ on $L^{2}\left(\mathbb{T}^{d}\right)$,

$$
H \sim \bigoplus_{n=1}^{\infty} \mathcal{E}_{n}(k) \quad \text { on } \bigoplus_{n=1}^{\infty} L^{2}\left(\mathbb{T}^{d}\right)
$$

1. Introduction: Peierls substitution

- H_{0} is unitarily equivalent by Fourier transformation to multiplication by the function $\frac{1}{2} k^{2}$ on $L^{2}\left(\mathbb{R}^{d}\right)$,

$$
H_{0} \sim \frac{1}{2} k^{2} .
$$

- H_{Γ} is unitarily equivalent by a Bloch-Floquet transformation to an orthogonal sum of multiplication operators by functions $\mathcal{E}_{n}(k)$ on $L^{2}\left(\mathbb{T}^{d}\right)$,

$$
H \sim \bigoplus_{n=1}^{\infty} \mathcal{E}_{n}(k) \quad \text { on } \bigoplus_{n=1}^{\infty} L^{2}\left(\mathbb{T}^{d}\right)
$$

- $H_{\Gamma, B_{0}}$ is unitarily equivalent by a magnetic Bloch-Floquet transformation to an orthogonal sum of multiplication operators by functions $E_{n}(k)$ on $L^{2}\left(\Xi_{n}\right)$,

$$
H_{\Gamma, B_{0}} \sim \bigoplus_{n=1}^{\infty} E_{n}(k) \quad \text { on } \bigoplus_{n=1}^{\infty} L^{2}\left(\Xi_{n}\right) .
$$

1. Introduction: Peierls substitution

What happens when we add to these operators a non-periodic potential W and a non-linear vector potential A corresponding to "small" fields?

1. Introduction: Peierls substitution

- Fourier transformation turns $\widetilde{H}_{0}=\frac{1}{2}\left(-\mathrm{i} \nabla_{x}+A(x)\right)^{2}+W(x)$ into the pseudo-differential operator

$$
\tilde{H}_{0} \sim \frac{1}{2}\left(k+A\left(\mathrm{i} \nabla_{k}\right)\right)^{2}+W\left(\mathrm{i} \nabla_{k}\right) .
$$

1. Introduction: Peierls substitution

- Fourier transformation turns $\widetilde{H}_{0}=\frac{1}{2}\left(-\mathrm{i} \nabla_{x}+A(x)\right)^{2}+W(x)$ into the pseudo-differential operator

$$
\widetilde{H}_{0} \sim \frac{1}{2}\left(k+A\left(\mathrm{i} \nabla_{k}\right)\right)^{2}+W\left(\mathrm{i} \nabla_{k}\right)
$$

- Peierls substitution for Bloch bands:

The restriction of $\widetilde{H}_{\Gamma}=\frac{1}{2}\left(-\mathrm{i} \nabla_{x}+A(x)\right)^{2}+V_{\Gamma}(x)+W(x)$ to one of the subspaces $L^{2}\left(\mathbb{T}^{d}\right)$ under Bloch-Floquet transformation should be close to

$$
\left.\tilde{H}_{\Gamma}\right|_{L^{2}\left(\mathbb{T}^{d}\right)} \sim \mathcal{E}_{n}\left(k+A\left(\mathrm{i} \nabla_{k}\right)\right)+W\left(\mathrm{i} \nabla_{k}\right) .
$$

1. Introduction: Peierls substitution

- Fourier transformation turns $\widetilde{H}_{0}=\frac{1}{2}\left(-\mathrm{i} \nabla_{x}+A(x)\right)^{2}+W(x)$ into the pseudo-differential operator

$$
\widetilde{H}_{0} \sim \frac{1}{2}\left(k+A\left(\mathrm{i} \nabla_{k}\right)\right)^{2}+W\left(\mathrm{i} \nabla_{k}\right)
$$

- Peierls substitution for Bloch bands:

The restriction of $\widetilde{H}_{\Gamma}=\frac{1}{2}\left(-\mathrm{i} \nabla_{x}+A(x)\right)^{2}+V_{\Gamma}(x)+W(x)$ to one of the subspaces $L^{2}\left(\mathbb{T}^{d}\right)$ under Bloch-Floquet transformation should be close to

$$
\left.\tilde{H}_{\Gamma}\right|_{L^{2}\left(\mathbb{T}^{d}\right)} \sim \mathcal{E}_{n}\left(k+A\left(\mathrm{i} \nabla_{k}\right)\right)+W\left(\mathrm{i} \nabla_{k}\right)
$$

- Peierls substitution for magnetic Bloch bands:
$\widetilde{H}_{\Gamma}=\frac{1}{2}\left(-\mathrm{i} \nabla_{x}+A_{0}(x)+A(x)\right)^{2}+V_{\Gamma}(x)+W(x)$ restricted to one of the subspaces $L^{2}\left(\bar{\Xi}_{n}\right)$ under magnetic Bloch-Floquet transformation should be close to

$$
\left.\widetilde{H}_{\Gamma}\right|_{L^{2}\left(\Xi_{n}\right)} \sim E_{n}\left(k+A\left(\mathrm{i} \nabla_{k}\right)\right)+W\left(\mathrm{i} \nabla_{k}\right) .
$$

1. Introduction: Some mathematical literature

- Buslaev '87
- Guillot, Ralston, Trubowitz '88
- Bellisard '88, '89
- Helffer, Sjöstrand '88, '89, '90
- Nenciu '89, '91
- Gérard, Martinez, Sjöstrand '91
- Panati, Spohn, T. '03
- Dimassi, Guillot, Ralston '04
- De Nittis, Panati '10
- De Nittis, Lein '11
- Cornean, Nenciu '14

2. Setup and scaling

$$
\text { Let } d=2, B_{0} \in \mathbb{R}, \mathcal{B}_{0}:=\left(\begin{array}{cc}
0 & -B_{0} \\
B_{0} & 0
\end{array}\right), A_{0}(x):=\frac{1}{2} \mathcal{B}_{0} x
$$

2. Setup and scaling

Let $d=2, B_{0} \in \mathbb{R}, \mathcal{B}_{0}:=\left(\begin{array}{cc}0 & -B_{0} \\ B_{0} & 0\end{array}\right), A_{0}(x):=\frac{1}{2} \mathcal{B}_{0} x$ and

$$
\tilde{\Gamma}:=\left\{a \tilde{\gamma}_{1}+b \tilde{\gamma}_{2} \in \mathbb{R}^{2} \mid a, b \in \mathbb{Z}\right\}
$$

for some basis ($\left.\tilde{\gamma}_{1}, \tilde{\gamma}_{2}\right)$ of \mathbb{R}^{2}.

2. Setup and scaling

Let $d=2, B_{0} \in \mathbb{R}, \mathcal{B}_{0}:=\left(\begin{array}{cc}0 & -B_{0} \\ B_{0} & 0\end{array}\right), A_{0}(x):=\frac{1}{2} \mathcal{B}_{0} x$ and

$$
\tilde{\Gamma}:=\left\{a \tilde{\gamma}_{1}+b \tilde{\gamma}_{2} \in \mathbb{R}^{2} \mid a, b \in \mathbb{Z}\right\}
$$

for some basis $\left(\tilde{\gamma}_{1}, \tilde{\gamma}_{2}\right)$ of \mathbb{R}^{2}.

Let $V_{\tilde{\Gamma}}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be periodic with respect to $\tilde{\Gamma}$,

$$
V_{\tilde{\Gamma}}(x+\gamma)=V_{\tilde{\Gamma}}(x) \quad \text { for all } \gamma \in \tilde{\Gamma}, x \in \mathbb{R}^{2},
$$

and relatively bounded with respect to $\left(-\mathrm{i} \nabla_{x}+A_{0}(x)\right)^{2}$ with relative bound smaller than one.

2. Setup and scaling

Let $d=2, B_{0} \in \mathbb{R}, \mathcal{B}_{0}:=\left(\begin{array}{cc}0 & -B_{0} \\ B_{0} & 0\end{array}\right), A_{0}(x):=\frac{1}{2} \mathcal{B}_{0} x$ and

$$
\tilde{\Gamma}:=\left\{a \tilde{\gamma}_{1}+b \tilde{\gamma}_{2} \in \mathbb{R}^{2} \mid a, b \in \mathbb{Z}\right\}
$$

for some basis $\left(\tilde{\gamma}_{1}, \tilde{\gamma}_{2}\right)$ of \mathbb{R}^{2}.

Let $V_{\tilde{\Gamma}}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be periodic with respect to $\tilde{\Gamma}$,

$$
V_{\tilde{\Gamma}}(x+\gamma)=V_{\tilde{\Gamma}}(x) \quad \text { for all } \gamma \in \tilde{\Gamma}, x \in \mathbb{R}^{2},
$$

and relatively bounded with respect to $\left(-i \nabla_{x}+A_{0}(x)\right)^{2}$ with relative bound smaller than one.

Then

$$
H_{\mathrm{MB}}:=\frac{1}{2}\left(-\mathrm{i} \nabla_{x}+A_{0}(x)\right)^{2}+V_{\tilde{\Gamma}}(x)
$$

is self-adjoint on the magnetic Sobolev space $H_{A_{0}}^{2}\left(\mathbb{R}^{2}\right)$.

2. Setup and scaling

Let $W \in C_{\mathrm{b}}^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $A \in C_{\mathrm{b}}^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$, where we choose a gauge for A such that $A(x) \cdot \tilde{\gamma}_{2}=0$ for all $x \in \mathbb{R}^{2}$.

2. Setup and scaling

Let $W \in C_{\mathrm{b}}^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $A \in C_{\mathrm{b}}^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$, where we choose a gauge for A such that $A(x) \cdot \tilde{\gamma}_{2}=0$ for all $x \in \mathbb{R}^{2}$.

Then for $\varepsilon \in\left(0, \varepsilon_{0}\right]$ the magnetic Bloch Hamiltonian perturbed by slowly varying external fields is

$$
H^{\varepsilon}:=\frac{1}{2}\left(-\mathrm{i} \nabla_{x}+A_{0}(x)+A(\varepsilon x)\right)^{2}+V_{\tilde{\Gamma}}(x)+W(\varepsilon x),
$$

which is also self-adjoint on the magnetic Sobolev space $H_{A_{0}}^{2}\left(\mathbb{R}^{2}\right)$.

2. Setup and scaling

Let $W \in C_{\mathrm{b}}^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $A \in C_{\mathrm{b}}^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$, where we choose a gauge for A such that $A(x) \cdot \tilde{\gamma}_{2}=0$ for all $x \in \mathbb{R}^{2}$.

Then for $\varepsilon \in\left(0, \varepsilon_{0}\right]$ the magnetic Bloch Hamiltonian perturbed by slowly varying external fields is

$$
H^{\varepsilon}:=\frac{1}{2}\left(-\mathrm{i} \nabla_{x}+A_{0}(x)+A(\varepsilon x)\right)^{2}+V_{\tilde{\Gamma}}(x)+W(\varepsilon x),
$$

which is also self-adjoint on the magnetic Sobolev space $H_{A_{0}}^{2}\left(\mathbb{R}^{2}\right)$.
For $\varepsilon \ll 1$ the external potentials vary on a scale that is large compared to the fixed lattice spacing of $\tilde{\Gamma}$ and we are interested in the asymptotic limit $\varepsilon \rightarrow 0$.

2. Setup and scaling

Let $W \in C_{\mathrm{b}}^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $A \in C_{\mathrm{b}}^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$, where we choose a gauge for A such that $A(x) \cdot \tilde{\gamma}_{2}=0$ for all $x \in \mathbb{R}^{2}$.

Then for $\varepsilon \in\left(0, \varepsilon_{0}\right]$ the magnetic Bloch Hamiltonian perturbed by slowly varying external fields is

$$
H^{\varepsilon}:=\frac{1}{2}\left(-\mathrm{i} \nabla_{x}+A_{0}(x)+A(\varepsilon x)\right)^{2}+V_{\tilde{\Gamma}}(x)+W(\varepsilon x),
$$

which is also self-adjoint on the magnetic Sobolev space $H_{A_{0}}^{2}\left(\mathbb{R}^{2}\right)$.
For $\varepsilon \ll 1$ the external potentials vary on a scale that is large compared to the fixed lattice spacing of $\tilde{\Gamma}$ and we are interested in the asymptotic limit $\varepsilon \rightarrow 0$.

Note that all of the following works similarly for slowly perturbed tight binding models.

3. Magnetic Bloch Floquet transformation

Define the magnetic translation of functions on \mathbb{R}^{2} by $\widetilde{\gamma}_{j}$ as

$$
\left(\widetilde{T}_{j} \psi\right)(x):=\mathrm{e}^{\frac{\mathrm{i}}{2}\left\langle x, \mathcal{B}_{0} \widetilde{\gamma}_{j}\right\rangle} \psi\left(x-\widetilde{\gamma}_{j}\right)
$$

3. Magnetic Bloch Floquet transformation

Define the magnetic translation of functions on \mathbb{R}^{2} by $\widetilde{\gamma}_{j}$ as

$$
\left(\widetilde{T}_{j} \psi\right)(x):=\mathrm{e}^{\frac{\mathrm{i}}{2}\left\langle x, \mathcal{B}_{0} \widetilde{\gamma}_{j}\right\rangle} \psi\left(x-\widetilde{\gamma}_{j}\right)
$$

On $L^{2}\left(\mathbb{R}^{2}\right)$ the magnetic translations are unitary and leave invariant the magnetic momentum operator and the periodic potential,

$$
\widetilde{T}_{j}^{-1}\left(-\mathrm{i} \nabla-A_{0}\right) \widetilde{T}_{j}=\left(-\mathrm{i} \nabla-A_{0}\right), \quad \widetilde{T}_{j}^{-1} V_{\widetilde{\Gamma}} \widetilde{T}_{j}=V_{\widetilde{\Gamma}}
$$

and thus

$$
\widetilde{T}_{j}^{-1} H_{\mathrm{MB}} \widetilde{T}_{j}=H_{\mathrm{MB}}
$$

3. Magnetic Bloch Floquet transformation

Define the magnetic translation of functions on \mathbb{R}^{2} by $\widetilde{\gamma}_{j}$ as

$$
\left(\widetilde{T}_{j} \psi\right)(x):=\mathrm{e}^{\frac{\mathrm{i}}{2}\left\langle x, \mathcal{B}_{0} \widetilde{\gamma}_{j}\right\rangle} \psi\left(x-\widetilde{\gamma}_{j}\right)
$$

On $L^{2}\left(\mathbb{R}^{2}\right)$ the magnetic translations are unitary and leave invariant the magnetic momentum operator and the periodic potential,

$$
\widetilde{T}_{j}^{-1}\left(-\mathrm{i} \nabla-A_{0}\right) \widetilde{T}_{j}=\left(-\mathrm{i} \nabla-A_{0}\right), \quad \widetilde{T}_{j}^{-1} V_{\widetilde{\Gamma}} \widetilde{T}_{j}=V_{\widetilde{\Gamma}}
$$

and thus

$$
\widetilde{T}_{j}^{-1} H_{\mathrm{MB}} \widetilde{T}_{j}=H_{\mathrm{MB}}
$$

Because of

$$
\widetilde{T}_{1} \widetilde{T}_{2}=\mathrm{e}^{\mathrm{i}\left\langle\widetilde{\gamma}_{2}, \mathcal{B}_{0} \tilde{\gamma}_{1}\right\rangle \widetilde{T}_{2} \widetilde{T}_{1},}
$$

we only obtain a unitary representation of $\widetilde{\Gamma}$ if $\left\langle\widetilde{\gamma}_{2}, \mathcal{B}_{0} \widetilde{\gamma}_{1}\right\rangle \in 2 \pi \mathbb{Z}$.

3. Magnetic Bloch Floquet transformation

Define the magnetic translation of functions on \mathbb{R}^{2} by $\widetilde{\gamma}_{j}$ as

$$
\left(\widetilde{T}_{j} \psi\right)(x):=\mathrm{e}^{\frac{\mathrm{i}}{2}\left\langle x, \mathcal{B}_{0} \widetilde{\gamma}_{j}\right\rangle} \psi\left(x-\widetilde{\gamma}_{j}\right) .
$$

On $L^{2}\left(\mathbb{R}^{2}\right)$ the magnetic translations are unitary and leave invariant the magnetic momentum operator and the periodic potential,

$$
\widetilde{T}_{j}^{-1}\left(-\mathrm{i} \nabla-A_{0}\right) \widetilde{T}_{j}=\left(-\mathrm{i} \nabla-A_{0}\right), \quad \widetilde{T}_{j}^{-1} V_{\widetilde{\Gamma}} \widetilde{T}_{j}=V_{\widetilde{\Gamma}}
$$

and thus

$$
\widetilde{T}_{j}^{-1} H_{\mathrm{MB}} \widetilde{T}_{j}=H_{\mathrm{MB}}
$$

Because of

$$
\widetilde{T}_{1} \widetilde{T}_{2}=\mathrm{e}^{\mathrm{i}\left(\widetilde{\gamma}_{2}, \mathcal{B}_{0} \tilde{\gamma}_{1}\right\rangle \widetilde{T}_{2} \widetilde{T}_{1},}
$$

we only obtain a unitary representation of $\widetilde{\Gamma}$ if $\left\langle\widetilde{\gamma}_{2}, \mathcal{B}_{0} \widetilde{\gamma}_{1}\right\rangle \in 2 \pi \mathbb{Z}$.
Here $\left\langle\widetilde{\gamma}_{2}, \mathcal{B}_{0} \widetilde{\gamma}_{1}\right\rangle \underset{\sim}{=} B_{0}|M|$ is the magnetic flux through the unit cell M of the lattice $\widetilde{\Gamma}$ with volume $|M|=\widetilde{\gamma}_{1} \wedge \widetilde{\gamma}_{2}$.

3. Magnetic Bloch Floquet transformation

Let the flux of B_{0} per unit cell satisfy $\left\langle\widetilde{\gamma}_{2}, \mathcal{B}_{0} \widetilde{\gamma}_{1}\right\rangle=2 \pi \frac{p}{q} \in 2 \pi \mathbb{Q}$.

3. Magnetic Bloch Floquet transformation

Let the flux of B_{0} per unit cell satisfy $\left\langle\widetilde{\gamma}_{2}, \mathcal{B}_{0} \widetilde{\gamma}_{1}\right\rangle=2 \pi \frac{p}{q} \in 2 \pi \mathbb{Q}$.
By passing to the sublattice $\Gamma \subset \tilde{\Gamma}$ spanned by the basis $\left(\gamma_{1}, \gamma_{2}\right):=$ ($q \tilde{\gamma}_{1}, \tilde{\gamma}_{2}$) and defining the magnetic translations T_{1}, T_{2} analogously, we achieve $\left\langle\gamma_{2}, \mathcal{B}_{0} \gamma_{1}\right\rangle=2 \pi p \in 2 \pi \mathbb{Z}$.

3. Magnetic Bloch Floquet transformation

Let the flux of B_{0} per unit cell satisfy $\left\langle\widetilde{\gamma}_{2}, \mathcal{B}_{0} \widetilde{\gamma}_{1}\right\rangle=2 \pi \frac{p}{q} \in 2 \pi \mathbb{Q}$.

By passing to the sublattice $\Gamma \subset \tilde{\Gamma}$ spanned by the basis $\left(\gamma_{1}, \gamma_{2}\right):=$ ($q \tilde{\gamma}_{1}, \tilde{\gamma}_{2}$) and defining the magnetic translations T_{1}, T_{2} analogously, we achieve $\left\langle\gamma_{2}, \mathcal{B}_{0} \gamma_{1}\right\rangle=2 \pi p \in 2 \pi \mathbb{Z}$. Hence

$$
T: \Gamma \rightarrow \mathcal{L}\left(L^{2}\left(\mathbb{R}^{2}\right)\right), \quad \gamma=n_{1} \gamma_{1}+n_{2} \gamma_{2} \mapsto \quad T_{\gamma}:=T_{1}^{n_{1}} T_{2}^{n_{2}}
$$

is a unitary representation of Γ on $L^{2}\left(\mathbb{R}^{2}\right)$ satisfying

$$
T_{\gamma}^{-1} H_{\mathrm{MB}} T_{\gamma}=H_{\mathrm{MB}}
$$

for all $\gamma \in \Gamma$.

3. Magnetic Bloch Floquet transformation

For $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ the magnetic Bloch-Floquet transformation is defined by

$$
\left(\mathcal{U}_{\mathrm{BF}} \psi\right)(k, y):=\mathrm{e}^{-\mathrm{i} y \cdot k} \sum_{\gamma \in \Gamma} \mathrm{e}^{\mathrm{i} \gamma \cdot k}\left(T_{\gamma} \psi\right)(y)
$$

3. Magnetic Bloch Floquet transformation

For $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ the magnetic Bloch-Floquet transformation is defined by

$$
\left(\mathcal{U}_{\mathrm{BF}} \psi\right)(k, y):=\mathrm{e}^{-\mathrm{i} y \cdot k} \sum_{\gamma \in \Gamma} \mathrm{e}^{\mathrm{i} \gamma \cdot k}\left(T_{\gamma} \psi\right)(y) .
$$

$\hat{\psi}:=\mathcal{U}_{\mathrm{BF}} \psi$ satisfies as a function on $\mathbb{R}_{k}^{2} \times \mathbb{R}_{y}^{2}$

$$
T_{\gamma} \hat{\psi}(k, \cdot)=\hat{\psi}(k, \cdot) \quad \text { for all } k \in \mathbb{R}^{2}, \gamma \in \Gamma
$$

and

$$
\hat{\psi}\left(k-\gamma^{*}, y\right)=\underbrace{\mathrm{e}^{\mathrm{i} \gamma^{*} \cdot y}}_{=: \tau\left(\gamma^{*}\right)} \hat{\psi}(k, y) \quad \text { for all } k, y \in \mathbb{R}^{2}, \gamma^{*} \in \Gamma^{*}
$$

where Γ^{*} is the dual lattice to Γ.

3. Magnetic Bloch Floquet transformation

Introducing

$$
\mathcal{H}_{\mathrm{f}}:=\left\{f \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}_{y}^{2}\right) \mid T_{\gamma} f=f \quad \text { for all } \quad \gamma \in \Gamma\right\},
$$

3. Magnetic Bloch Floquet transformation

Introducing

$$
\mathcal{H}_{\mathrm{f}}:=\left\{f \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}_{y}^{2}\right) \mid T_{\gamma} f=f \quad \text { for all } \quad \gamma \in \Gamma\right\}
$$

and

$$
\mathcal{H}_{\tau}:=\left\{g \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}_{k}^{2}, \mathcal{H}_{\mathrm{f}}\right) \mid g\left(k-\gamma^{*}\right)=\tau\left(\gamma^{*}\right) g(k) \quad \text { for all } \quad \gamma^{*} \in \Gamma^{*}\right\}
$$

equipped with the inner product $\langle f, g\rangle_{\mathcal{H}_{\tau}}=\int_{M^{*}}\langle f(k), g(k)\rangle_{\mathcal{H}_{f}} \mathrm{~d} k$, the magnetic Bloch-Floquet transformation is a unitary map

$$
\mathcal{U}_{\mathrm{BF}}: L^{2}\left(\mathbb{R}_{x}^{2}\right) \rightarrow \mathcal{H}_{\tau} .
$$

3. Magnetic Bloch Floquet transformation

Introducing

$$
\mathcal{H}_{\mathrm{f}}:=\left\{f \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}_{y}^{2}\right) \mid T_{\gamma} f=f \quad \text { for all } \quad \gamma \in \Gamma\right\}
$$

and
$\mathcal{H}_{\tau}:=\left\{g \in L_{\text {loc }}^{2}\left(\mathbb{R}_{k}^{2}, \mathcal{H}_{\mathrm{f}}\right) \mid g\left(k-\gamma^{*}\right)=\tau\left(\gamma^{*}\right) g(k) \quad\right.$ for all $\left.\quad \gamma^{*} \in \Gamma^{*}\right\}$,
equipped with the inner product $\langle f, g\rangle_{\mathcal{H}_{\tau}}=\int_{M^{*}}\langle f(k), g(k)\rangle_{\mathcal{H}_{f}} \mathrm{~d} k$, the magnetic Bloch-Floquet transformation is a unitary map

$$
\mathcal{U}_{\mathrm{BF}}: L^{2}\left(\mathbb{R}_{\chi}^{2}\right) \rightarrow \mathcal{H}_{\tau} .
$$

The Bloch-Floquet transform $\hat{H}_{\mathrm{MB}}:=\mathcal{U}_{\mathrm{BF}} H_{\mathrm{MB}} \mathcal{U}_{\mathrm{BF}}^{*}$ of the unperturbed Hamiltonian H_{MB} acts on $\psi \in \mathcal{H}_{\tau}$ as

$$
\left(\hat{H}_{\mathrm{MB}} \psi\right)(k)=H_{\mathrm{f}}(k) \psi(k),
$$

where

$$
H_{\mathrm{f}}(k):=\frac{1}{2}\left(-\mathrm{i} \nabla_{y}-A_{0}(y)+k\right)^{2}+V_{\Gamma}(y) .
$$

3. Magnetic Bloch bands

$H_{\mathrm{f}}(k)$ has discrete spectrum with eigenvalues $E_{n}(k)$ of finite multiplicity that accumulate at infinity. Let

$$
E_{1}(k) \leq E_{2}(k) \leq \ldots
$$

be the eigenvalues repeated according to their multiplicity. In the following, $k \mapsto E_{n}(k)$ will be called the nth band function or just the nth Bloch band.

3. Magnetic Bloch bands

$H_{\mathrm{f}}(k)$ has discrete spectrum with eigenvalues $E_{n}(k)$ of finite multiplicity that accumulate at infinity. Let

$$
E_{1}(k) \leq E_{2}(k) \leq \ldots
$$

be the eigenvalues repeated according to their multiplicity. In the following, $k \mapsto E_{n}(k)$ will be called the nth band function or just the nth Bloch band.

Since $H_{\mathrm{f}}(k)$ is τ-equivariant, i.e.

$$
H_{\mathrm{f}}\left(k-\gamma^{*}\right)=\tau\left(\gamma^{*}\right) H_{\mathrm{f}}(k) \tau\left(\gamma^{*}\right)^{-1}
$$

and $\tau\left(\gamma^{*}\right)$ is unitary, the Bloch bands $E_{n}(k)$ are Γ^{*}-periodic functions.

3. Magnetic Bloch bands

$H_{\mathrm{f}}(k)$ has discrete spectrum with eigenvalues $E_{n}(k)$ of finite multiplicity that accumulate at infinity. Let

$$
E_{1}(k) \leq E_{2}(k) \leq \ldots
$$

be the eigenvalues repeated according to their multiplicity. In the following, $k \mapsto E_{n}(k)$ will be called the nth band function or just the nth Bloch band.

3. Magnetic Bloch bands: Hofstadter Hamiltonian

Eigenvalue bands for $\frac{p}{q}=\frac{1}{3}$

3. Magnetic Bloch bands: Hofstadter Hamiltonian

3. Magnetic Bloch bands

Let $P_{n}(k)$ be the spectral projection of $H_{\mathrm{f}}(k)$ corresponding to the eigenvalue $E_{n}(k)$.

3. Magnetic Bloch bands

Let $P_{n}(k)$ be the spectral projection of $H_{\mathrm{f}}(k)$ corresponding to the eigenvalue $E_{n}(k)$.
Then on the subspace

$$
P_{n} \mathcal{H}_{\tau}:=\left\{\psi \in \mathcal{H}_{\tau} \mid \psi(k) \in P_{n}(k) \mathcal{H}_{f}\right\}
$$

we have

$$
\left(\hat{H}_{\mathrm{MB}} \psi\right)(k)=H_{\mathrm{f}}(k) \psi(k)=E_{n}(k) \psi(k) .
$$

3. Magnetic Bloch bands

A family $\left\{E_{n}(k)\right\}_{n \in I}$ with $I=\left[I_{-}, I_{+}\right] \cap \mathbb{N}$ is called isolated, if

$$
\inf _{k \in M^{*}} \operatorname{dist}\left(\cup_{n \in I}\left\{E_{n}(k)\right\}, \cup_{m \notin I}\left\{E_{m}(k)\right\}\right)>0 .
$$

3. Magnetic Bloch bands

A family $\left\{E_{n}(k)\right\}_{n \in I}$ with $I=\left[I_{-}, I_{+}\right] \cap \mathbb{N}$ is called isolated, if

$$
\inf _{k \in M^{*}} \operatorname{dist}\left(\cup_{n \in I}\left\{E_{n}(k)\right\}, \cup_{m \notin I}\left\{E_{m}(k)\right\}\right)>0
$$

We say that $\left\{E_{n}(k)\right\}_{n \in I}$ is strictly isolated, if for

$$
\sigma_{I}:=\overline{\cup_{n \in I} \cup_{k \in M^{*}}\left\{E_{n}(k)\right\}}
$$

we have that

$$
\inf _{m \notin l, k \in M^{*}} \operatorname{dist}\left(E_{m}(k), \sigma_{l}\right)>0 .
$$

4. Results

Theorem

Let $\left\{E_{n}(k)\right\}_{n \in I}$ be an isolated family of Bloch bands. Then there exists an orthogonal projection $\Pi_{I}^{\varepsilon} \in \mathcal{L}\left(\mathcal{H}_{\tau}\right)$ such that $H^{\varepsilon} \Pi_{I}^{\varepsilon}$ is a bounded operator and

$$
\left\|\left[H^{\varepsilon}, \Pi_{l}^{\varepsilon}\right]\right\|=\mathcal{O}\left(\varepsilon^{\infty}\right) .
$$

4. Results

Theorem

Let $\left\{E_{n}(k)\right\}_{n \in I}$ be an isolated family of Bloch bands. Then there exists an orthogonal projection $\Pi_{I}^{\varepsilon} \in \mathcal{L}\left(\mathcal{H}_{\tau}\right)$ such that $H^{\varepsilon} \Pi_{I}^{\varepsilon}$ is a bounded operator and

$$
\left\|\left[H^{\varepsilon}, \Pi_{l}^{\varepsilon}\right]\right\|=\mathcal{O}\left(\varepsilon^{\infty}\right)
$$

Moreover, Π_{l}^{ε} is close to a pseudodifferential operator $\mathrm{Op}^{\tau}(\pi)$,

$$
\begin{equation*}
\left\|\Pi_{I}^{\varepsilon}-\mathrm{Op}^{\tau}(\pi)\right\|=\mathcal{O}\left(\varepsilon^{\infty}\right) \tag{*}
\end{equation*}
$$

with principal symbol $\pi_{0}(k, r)=P_{I}(k-A(r))$.

4. Results

Theorem

Let $\left\{E_{n}(k)\right\}_{n \in I}$ be an isolated family of Bloch bands. Then there exists an orthogonal projection $\Pi_{I}^{\varepsilon} \in \mathcal{L}\left(\mathcal{H}_{\tau}\right)$ such that $H^{\varepsilon} \Pi_{I}^{\varepsilon}$ is a bounded operator and

$$
\left\|\left[H^{\varepsilon}, \Pi_{l}^{\varepsilon}\right]\right\|=\mathcal{O}\left(\varepsilon^{\infty}\right)
$$

Moreover, Π_{l}^{ε} is close to a pseudodifferential operator $\mathrm{Op}^{\tau}(\pi)$,

$$
\begin{equation*}
\left\|\Pi_{l}^{\varepsilon}-\mathrm{Op}^{\tau}(\pi)\right\|=\mathcal{O}\left(\varepsilon^{\infty}\right) \tag{*}
\end{equation*}
$$

with principal symbol $\pi_{0}(k, r)=P_{I}(k-A(r))$.

If $\left\{E_{n}(k)\right\}_{n \in I}$ is strictly isolated and if the gaps remain open for $\varepsilon \in\left(0, \varepsilon_{0}\right]$, then $(*)$ holds for Π_{l}^{ε} being the corresponding spectral projection of H^{ε}.

4. Results

Theorem

Let $\left\{E_{n}(k)\right\}_{n \in I}$ be an isolated family of Bloch bands. Then there exists an orthogonal projection $\Pi_{I}^{\varepsilon} \in \mathcal{L}\left(\mathcal{H}_{\tau}\right)$ such that $H^{\varepsilon} \Pi_{I}^{\varepsilon}$ is a bounded operator and

$$
\left\|\left[H^{\varepsilon}, \Pi_{l}^{\varepsilon}\right]\right\|=\mathcal{O}\left(\varepsilon^{\infty}\right)
$$

Moreover, Π_{l}^{ε} is close to a pseudodifferential operator $\mathrm{Op}^{\tau}(\pi)$,

$$
\begin{equation*}
\left\|\Pi_{l}^{\varepsilon}-\mathrm{Op}^{\tau}(\pi)\right\|=\mathcal{O}\left(\varepsilon^{\infty}\right) \tag{*}
\end{equation*}
$$

with principal symbol $\pi_{0}(k, r)=P_{I}(k-A(r))$.

The construction is well known and based on methods developed by Helffer and Sjöstrand in ' 89 that were applied in similar ways by Martinez, Nenciu and Sordoni in '03.

4. Results

For simplicity we focus on one non-degenerate band E_{n}, i.e. $I=\{n\}$.

4. Results

For simplicity we focus on one non-degenerate band E_{n}, i.e. $I=\{n\}$.
To prove "Peierls substitution", we need to show that $\Pi_{n}^{\varepsilon} H^{\varepsilon} \Pi_{n}^{\varepsilon}$ is unitarily equivalent to an operator of the form

$$
H_{n}^{\mathrm{eff}}=E_{n}\left(k+A\left(\mathrm{i} \varepsilon \nabla_{k}\right)\right)+W\left(\mathrm{i} \varepsilon \nabla_{k}\right)+\mathcal{O}(\varepsilon)
$$

acting on some suitable space $\mathcal{H}_{\text {eff }}$ of functions of k.

4. Results

For simplicity we focus on one non-degenerate band E_{n}, i.e. $I=\{n\}$.
To prove "Peierls substitution", we need to show that $\Pi_{n}^{\varepsilon} H^{\varepsilon} \Pi_{n}^{\varepsilon}$ is unitarily equivalent to an operator of the form

$$
H_{n}^{\mathrm{eff}}=E_{n}\left(k+A\left(\mathrm{i} \varepsilon \nabla_{k}\right)\right)+W\left(\mathrm{i} \varepsilon \nabla_{k}\right)+\mathcal{O}(\varepsilon)
$$

acting on some suitable space $\mathcal{H}_{\text {eff }}$ of functions of k.
For the case $A_{0}=0$ this was achieved in Panati, Spohn, T. '03, where we also computed the first order correction term to Peierls substitution. In this case

$$
\mathcal{H}_{\mathrm{eff}}=L^{2}\left(\mathbb{T}_{k}^{*}\right)
$$

where \mathbb{T}_{k}^{*} denotes M^{*} with opposing edges identified.

4. Results

The key ingredient for constructing the corresponding unitary map

$$
U_{n}^{\varepsilon}: \operatorname{ran} \Pi_{n}^{\varepsilon} \rightarrow L^{2}\left(\mathbb{T}_{k}^{*}\right)
$$

is a trivializing section of the Bloch bundle.

4. Results

The key ingredient for constructing the corresponding unitary map

$$
U_{n}^{\varepsilon}: \operatorname{ran} \Pi_{n}^{\varepsilon} \rightarrow L^{2}\left(\mathbb{T}_{k}^{*}\right)
$$

is a trivializing section of the Bloch bundle.
Definition Let the bundle $\pi: \Xi_{\tau} \rightarrow \mathbb{T}^{*}$ with typical fibre \mathcal{H}_{f} be given by

$$
\bar{\Xi}_{\tau}:=\left(\mathbb{R}^{2} \times \mathcal{H}_{\mathrm{f}}\right) / \sim_{\tau}
$$

where
$(k, \varphi) \sim_{\tau}\left(k^{\prime}, \varphi^{\prime}\right): \Leftrightarrow \exists \gamma^{*} \in \Gamma^{*}: k^{\prime}=k-\gamma^{*}$ and $\varphi^{\prime}=\tau\left(\gamma^{*}\right) \varphi$.
As a consequence, $\mathcal{H}_{\tau}=L^{2}\left(\bar{\Xi}_{\tau}\right)$.

4. Results

The key ingredient for constructing the corresponding unitary map

$$
U_{n}^{\varepsilon}: \operatorname{ran} \Pi_{n}^{\varepsilon} \rightarrow L^{2}\left(\mathbb{T}_{k}^{*}\right)
$$

is a trivializing section of the Bloch bundle.
Definition Let the bundle $\pi: \Xi_{\tau} \rightarrow \mathbb{T}^{*}$ with typical fibre \mathcal{H}_{f} be given by

$$
\bar{\Xi}_{\tau}:=\left(\mathbb{R}^{2} \times \mathcal{H}_{\mathrm{f}}\right) / \sim_{\tau}
$$

where
$(k, \varphi) \sim_{\tau}\left(k^{\prime}, \varphi^{\prime}\right): \Leftrightarrow \exists \gamma^{*} \in \Gamma^{*}: k^{\prime}=k-\gamma^{*}$ and $\varphi^{\prime}=\tau\left(\gamma^{*}\right) \varphi$.
As a consequence, $\mathcal{H}_{\tau}=L^{2}\left(\Xi_{\tau}\right)$.
The Bloch bundle $\bar{\Xi}_{n}$ associated to the isolated Bloch band $E_{n}(k)$ is the subbundle of Ξ_{τ} given by

$$
\Xi_{n}:=\left\{(k, \varphi) \in \mathbb{R}^{2} \times \mathcal{H}_{f} \mid \varphi \in P_{n}(k) \mathcal{H}_{f}\right\} / \sim_{\tau} .
$$

4. Results

For $A_{0}=0$ it was shown by Panati ' 07 that Bloch bundles are always trivializable. On the other hand, for $A_{0} \neq 0$ Bloch bundles are non-trivial in general, as they have non-zero Chern numbers.

4. Results

For $A_{0}=0$ it was shown by Panati ' 07 that Bloch bundles are always trivializable. On the other hand, for $A_{0} \neq 0$ Bloch bundles are non-trivial in general, as they have non-zero Chern numbers.

Theorem (Freund, T. '13)

To each isolated magnetic Bloch band E_{n} there exists a unitary

$$
U_{n}^{\varepsilon}: \operatorname{ran} \Pi_{n}^{\varepsilon} \rightarrow \mathcal{H}_{\theta}
$$

such that $H_{n}^{\text {eff }}:=U_{n}^{\varepsilon} \Pi_{n}^{\varepsilon} H^{\varepsilon} \Pi_{n}^{\varepsilon} U_{n}^{\varepsilon *}$ satisfies

$$
H_{n}^{\mathrm{eff}}=E_{n}\left(k+A\left(\mathrm{i} \varepsilon \nabla_{k}^{\theta}\right)\right)+W\left(\mathrm{i} \varepsilon \nabla_{k}^{\theta}\right)+\mathcal{O}(\varepsilon) .
$$

Here $\mathcal{H}_{\theta}=L^{2}\left(\Xi_{\theta}\right)$ contains L^{2}-section of a line-bundle Ξ_{θ} over the torus \mathbb{T}^{*} with connection ∇^{θ} determined by the Chern number $\theta \in \mathbb{Z}$ of the Bloch bundle Ξ_{n}.

4. Results

Main steps in the construction:

- Construct geometric Weyl-calculus for pseudodifferential operators acting on sections of non-trivial vector bundles over the torus.

Based on Widom '80, Safarov '98, Pflaum '98, Sharafutdinov '05, Hansen '10.

4. Results

Main steps in the construction:

- Construct geometric Weyl-calculus for pseudodifferential operators acting on sections of non-trivial vector bundles over the torus.
Based on Widom '80, Safarov '98, Pflaum '98, Sharafutdinov '05, Hansen '10.
- Construct a "canonical" reference bundle Ξ_{θ} with "canonical" connection ∇^{θ}.

4. Results

Main steps in the construction:

- Construct geometric Weyl-calculus for pseudodifferential operators acting on sections of non-trivial vector bundles over the torus.
Based on Widom '80, Safarov '98, Pflaum '98, Sharafutdinov '05, Hansen '10.
- Construct a "canonical" reference bundle Ξ_{θ} with "canonical" connection ∇^{θ}.
- Construct the unitary U_{n}^{ε}.

4. Results

Main steps in the construction:

- Construct geometric Weyl-calculus for pseudodifferential operators acting on sections of non-trivial vector bundles over the torus.
Based on Widom '80, Safarov '98, Pflaum '98, Sharafutdinov '05, Hansen '10.
- Construct a "canonical" reference bundle Ξ_{θ} with "canonical" connection ∇^{θ}.
- Construct the unitary U_{n}^{ε}.
- Compute asymptotic expansion of $H_{n}^{\text {eff }}$.

5. Canonical models for non-zero Chern numbers

The dispersion of the discrete Laplacian on \mathbb{Z}^{2} is

$$
E(k)=2\left(\cos \left(k_{1}\right)+\cos \left(k_{2}\right)\right)=\mathrm{e}^{\mathrm{i} k_{1}}+\mathrm{e}^{-\mathrm{i} k_{1}}+\mathrm{e}^{\mathrm{i} k_{2}}+\mathrm{e}^{-\mathrm{i} k_{2}} .
$$

5. Canonical models for non-zero Chern numbers

The dispersion of the discrete Laplacian on \mathbb{Z}^{2} is

$$
E(k)=2\left(\cos \left(k_{1}\right)+\cos \left(k_{2}\right)\right)=\mathrm{e}^{\mathrm{i} k_{1}}+\mathrm{e}^{-\mathrm{i} k_{1}}+\mathrm{e}^{\mathrm{i} k_{2}}+\mathrm{e}^{-\mathrm{i} k_{2}} .
$$

The Fourier transform of the discrete magnetic Laplacian is

$$
H_{\text {Hof }}^{B}=\mathrm{e}^{\mathrm{i} \mathcal{K}_{1}}+\mathrm{e}^{-\mathrm{i} \mathcal{K}_{1}}+\mathrm{e}^{\mathrm{i} \mathcal{K}_{2}}+\mathrm{e}^{-\mathrm{i} \mathcal{K}_{2}}
$$

and acts on $L^{2}\left([0,2 \pi)^{2}\right)$ with $\mathcal{K}_{1}=k_{1}+i B \partial_{k_{2}}$ and $\mathcal{K}_{2}=k_{2}$.

5. Canonical models for non-zero Chern numbers

The dispersion of the discrete Laplacian on \mathbb{Z}^{2} is

$$
E(k)=2\left(\cos \left(k_{1}\right)+\cos \left(k_{2}\right)\right)=\mathrm{e}^{\mathrm{i} k_{1}}+\mathrm{e}^{-\mathrm{i} k_{1}}+\mathrm{e}^{\mathrm{i} k_{2}}+\mathrm{e}^{-\mathrm{i} k_{2}} .
$$

The Fourier transform of the discrete magnetic Laplacian is

$$
H_{\text {Hof }}^{B}=\mathrm{e}^{\mathrm{i} \mathcal{K}_{1}}+\mathrm{e}^{-\mathrm{i} \mathcal{K}_{1}}+\mathrm{e}^{\mathrm{i} \mathcal{K}_{2}}+\mathrm{e}^{-\mathrm{i} \mathcal{K}_{2}}
$$

and acts on $L^{2}\left([0,2 \pi)^{2}\right)$ with $\mathcal{K}_{1}=k_{1}+\mathrm{i} B \partial_{k_{2}}$ and $\mathcal{K}_{2}=k_{2}$.
$H_{\text {Hof }}^{B}$ is called the Hofstadter Hamiltonian and it is given exactly by Peierls substitution,

$$
H_{\text {Hof }}^{B}=E\left(k-A\left(\mathrm{i} \nabla_{k}\right)\right) \quad \text { with } \quad A(r)=\left(-B r_{2}, 0\right) .
$$

5. Canonical models for non-zero Chern numbers

The dispersion of the discrete Laplacian on \mathbb{Z}^{2} is

$$
E(k)=2\left(\cos \left(k_{1}\right)+\cos \left(k_{2}\right)\right)=\mathrm{e}^{\mathrm{i} k_{1}}+\mathrm{e}^{-\mathrm{i} k_{1}}+\mathrm{e}^{\mathrm{i} k_{2}}+\mathrm{e}^{-\mathrm{i} k_{2}} .
$$

The Fourier transform of the discrete magnetic Laplacian is

$$
H_{\text {Hof }}^{B}=\mathrm{e}^{\mathrm{i} \mathcal{K}_{1}}+\mathrm{e}^{-\mathrm{i} \mathcal{K}_{1}}+\mathrm{e}^{\mathrm{i} \mathcal{K}_{2}}+\mathrm{e}^{-\mathrm{i} \mathcal{K}_{2}}
$$

and acts on $L^{2}\left([0,2 \pi)^{2}\right)$ with $\mathcal{K}_{1}=k_{1}+\mathrm{i} B \partial_{k_{2}}$ and $\mathcal{K}_{2}=k_{2}$.
$H_{\text {Hof }}^{B}$ is called the Hofstadter Hamiltonian and it is given exactly by Peierls substitution,

$$
H_{\text {Hof }}^{B}=E\left(k-A\left(\mathrm{i} \nabla_{k}\right)\right) \quad \text { with } \quad A(r)=\left(-B r_{2}, 0\right) .
$$

The Hofstadter Hamiltonian is the canonical model for a non-magnetic Bloch band perturbed by a small magnetic field B.

5. Canonical models for non-zero Chern numbers

Taking $E(k)$ as the dispersion of a magnetic Bloch band with Chern number $\theta \in \mathbb{Z}$, our Peierls substitution yields the canoncial model for a magnetic Bloch band perturbed by a small magnetic field B.

$$
H_{\theta}^{B}:=E\left(k-A\left(\mathrm{i} \nabla_{k}^{\theta}\right)\right)=\mathrm{e}^{\mathrm{i} \mathcal{K}_{1}^{\theta}}+\mathrm{e}^{-\mathrm{i} \mathcal{K}_{1}^{\theta}}+\mathrm{e}^{\mathrm{i} \mathcal{K}_{2}^{\theta}}+\mathrm{e}^{-\mathrm{i} \mathcal{K}_{2}^{\theta}}
$$

5. Canonical models for non-zero Chern numbers

Taking $E(k)$ as the dispersion of a magnetic Bloch band with Chern number $\theta \in \mathbb{Z}$, our Peierls substitution yields the canoncial model for a magnetic Bloch band perturbed by a small magnetic field B.

$$
H_{\theta}^{B}:=E\left(k-A\left(\mathrm{i} \nabla_{k}^{\theta}\right)\right)=\mathrm{e}^{\mathrm{i} \mathcal{K}_{1}^{\theta}}+\mathrm{e}^{-\mathrm{i} \mathcal{K}_{1}^{\theta}}+\mathrm{e}^{\mathrm{i} \mathcal{K}_{2}^{\theta}}+\mathrm{e}^{-\mathrm{i} \mathcal{K}_{2}^{\theta}}
$$

with

$$
\mathcal{K}_{1}^{\theta}=k_{1}+B\left(\mathrm{i} \partial_{k_{2}}-\frac{\theta}{2 \pi} k_{1}\right) \quad \text { and } \quad \mathcal{K}_{2}^{\theta}=k_{2}
$$

acting on
$L^{2}\left(\bar{\Xi}_{\theta}\right)=\left\{f \in L_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right) \left\lvert\, f\left(k-\gamma^{*}\right)=\mathrm{e}^{\frac{\mathrm{i} \theta k_{2} \gamma_{\mathrm{p}}^{*}}{2 \pi}} f(k)\right.\right.$ for all $\left.\gamma^{*} \in 2 \pi \mathbb{Z}^{2}\right\}$.

5. Canonical models for non-zero Chern numbers

Taking $E(k)$ as the dispersion of a magnetic Bloch band with Chern number $\theta \in \mathbb{Z}$, our Peierls substitution yields the canoncial model for a magnetic Bloch band perturbed by a small magnetic field B.

$$
H_{\theta}^{B}:=E\left(k-A\left(\mathrm{i} \nabla_{k}^{\theta}\right)\right)=\mathrm{e}^{\mathrm{i} \mathcal{K}_{1}^{\theta}}+\mathrm{e}^{-\mathrm{i} \mathcal{K}_{1}^{\theta}}+\mathrm{e}^{\mathrm{i} \mathcal{K}_{2}^{\theta}}+\mathrm{e}^{-\mathrm{i} \mathcal{K}_{2}^{\theta}}
$$

with

$$
\mathcal{K}_{1}^{\theta}=k_{1}+B\left(\mathrm{i} \partial_{k_{2}}-\frac{\theta}{2 \pi} k_{1}\right) \quad \text { and } \quad \mathcal{K}_{2}^{\theta}=k_{2}
$$

acting on
$L^{2}\left(\bar{\Xi}_{\theta}\right)=\left\{f \in L_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right) \left\lvert\, f\left(k-\gamma^{*}\right)=\mathrm{e}^{\frac{\mathrm{i} \theta k_{2} \gamma_{1}^{*}}{2 \pi}} f(k)\right.\right.$ for all $\left.\gamma^{*} \in 2 \pi \mathbb{Z}^{2}\right\}$.

Note that $H_{0}^{B} \equiv H_{\mathrm{Hof}}^{B}$.

5. Colored butterflies of Osadchy and Avron

5. Colored butterflies of Osadchy and Avron

5. Colored butterflies of Osadchy and Avron

5. Colored butterflies of Osadchy and Avron

5. Colored butterflies for H_{θ}^{B} ?

5. Colored butterflies for H_{θ}^{B} ?

