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1. Introduction: Band spectra

I H0 = −1
2 ∆x on L2(Rd

x )

I HΓ = −1
2 ∆x + VΓ(x)

with VΓ(x + γ) = VΓ(x) for all x ∈ Rd , γ ∈ Γ ∼ Zd

I HB0 = 1
2 (−i∇x + A0(x))2

with dA0 = B0 = const.

I HΓ,B0 = 1
2 (−i∇x + A0(x))2 + VΓ(x)

with Γ and B0 commensurable
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1. Introduction: Peierls substitution

I H0 is unitarily equivalent by Fourier transformation to
multiplication by the function 1

2 k2 on L2(Rd),

H0 ∼ 1
2 k2 .

I HΓ is unitarily equivalent by a Bloch-Floquet transformation to
an orthogonal sum of multiplication operators by functions
En(k) on L2(Td),

H ∼
∞⊕
n=1

En(k) on
∞⊕
n=1

L2(Td) .

I HΓ,B0 is unitarily equivalent by a magnetic Bloch-Floquet
transformation to an orthogonal sum of multiplication operators
by functions En(k) on L2(Ξn),

HΓ,B0 ∼
∞⊕
n=1

En(k) on
∞⊕
n=1

L2(Ξn) .
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1. Introduction: Peierls substitution

What happens when we add to these operators a non-periodic po-
tential W and a non-linear vector potential A corresponding to “small”
fields?



1. Introduction: Peierls substitution

I Fourier transformation turns H̃0 = 1
2

(
− i∇x + A(x)

)2
+ W (x)

into the pseudo-differential operator

H̃0 ∼ 1
2

(
k + A(i∇k)

)2
+ W (i∇k) .

I Peierls substitution for Bloch bands:

The restriction of H̃Γ = 1
2

(
− i∇x + A(x)

)2
+ VΓ(x) + W (x) to

one of the subspaces L2(Td) under Bloch-Floquet
transformation should be close to

H̃Γ|L2(Td ) ∼ En
(
k + A(i∇k)

)
+ W (i∇k) .

I Peierls substitution for magnetic Bloch bands:

H̃Γ = 1
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)2
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1. Introduction: Some mathematical literature
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I Guillot, Ralston, Trubowitz ’88

I Bellisard ’88, ’89

I Helffer, Sjöstrand ’88, ’89, ’90

I Nenciu ’89, ’91

I Gérard, Martinez, Sjöstrand ’91

I Panati, Spohn, T. ’03

I Dimassi, Guillot, Ralston ’04

I De Nittis, Panati ’10

I De Nittis, Lein ’11

I Cornean, Nenciu ’14



2. Setup and scaling

Let d = 2, B0 ∈ R, B0 :=

(
0 −B0

B0 0

)
, A0(x) := 1

2B0x

and
Γ̃ := {aγ̃1 + bγ̃2 ∈ R2 | a, b ∈ Z}

for some basis (γ̃1, γ̃2) of R2.

Let VΓ̃ : R2 → R be periodic with respect to Γ̃,

VΓ̃(x + γ) = VΓ̃(x) for all γ ∈ Γ̃, x ∈ R2 ,

and relatively bounded with respect to (−i∇x + A0(x))2 with relative
bound smaller than one.

Then
HMB := 1

2 (−i∇x + A0(x))2 + VΓ̃(x)

is self-adjoint on the magnetic Sobolev space H2
A0

(R2).
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2. Setup and scaling

Let W ∈ C∞b (R2,R) and A ∈ C∞b (R2,R2), where we choose a
gauge for A such that A(x) · γ̃2 = 0 for all x ∈ R2.

Then for ε ∈ (0, ε0] the magnetic Bloch Hamiltonian perturbed by
slowly varying external fields is

Hε := 1
2

(
− i∇x + A0(x) + A(εx)

)2
+ VΓ̃(x) + W (εx) ,

which is also self-adjoint on the magnetic Sobolev space H2
A0

(R2).

For ε � 1 the external potentials vary on a scale that is large com-
pared to the fixed lattice spacing of Γ̃ and we are interested in the
asymptotic limit ε→ 0.

Note that all of the following works similarly for slowly perturbed
tight binding models.
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3. Magnetic Bloch Floquet transformation

Define the magnetic translation of functions on R2 by γ̃j as

(T̃jψ)(x) := e
i
2
〈x ,B0γ̃j 〉ψ(x − γ̃j) .

On L2(R2) the magnetic translations are unitary and leave invariant
the magnetic momentum operator and the periodic potential ,

T̃−1
j (−i∇− A0) T̃j = (−i∇− A0) , T̃−1

j V
Γ̃

T̃j = V
Γ̃

and thus T̃−1
j HMB T̃j = HMB.

Because of
T̃1T̃2 = ei〈γ̃2,B0γ̃1〉T̃2T̃1 ,

we only obtain a unitary representation of Γ̃ if 〈γ̃2,B0γ̃1〉 ∈ 2πZ.

Here 〈γ̃2,B0γ̃1〉 = B0|M| is the magnetic flux through the unit cell
M of the lattice Γ̃ with volume |M| = γ̃1 ∧ γ̃2.
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3. Magnetic Bloch Floquet transformation

Let the flux of B0 per unit cell satisfy 〈γ̃2,B0γ̃1〉 = 2π p
q ∈ 2πQ.

By passing to the sublattice Γ ⊂ Γ̃ spanned by the basis (γ1, γ2) :=
(qγ̃1, γ̃2) and defining the magnetic translations T1, T2 analogously,
we achieve 〈γ2,B0γ1〉 = 2πp ∈ 2πZ. Hence

T : Γ→ L(L2(R2)) , γ = n1γ1 + n2γ2 7→ Tγ := T n1
1 T n2

2

is a unitary representation of Γ on L2(R2) satisfying

T−1
γ HMBTγ = HMB

for all γ ∈ Γ.
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3. Magnetic Bloch Floquet transformation

For ψ ∈ C∞0 (R2) the magnetic Bloch-Floquet transformation is
defined by

(UBFψ)(k, y) := e−iy ·k
∑
γ∈Γ

eiγ·k(Tγψ)(y) .

ψ̂ := UBFψ satisfies as a function on R2
k × R2

y

Tγψ̂(k, ·) = ψ̂(k, ·) for all k ∈ R2 , γ ∈ Γ ,

and

ψ̂(k − γ∗, y) = eiγ∗·y︸ ︷︷ ︸
=:τ(γ∗)

ψ̂(k , y) for all k , y ∈ R2 , γ∗ ∈ Γ∗

where Γ∗ is the dual lattice to Γ.
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3. Magnetic Bloch Floquet transformation

Introducing

Hf :=
{

f ∈ L2
loc(R2

y ) |Tγf = f for all γ ∈ Γ
}
,

and

Hτ := {g ∈ L2
loc(R2

k ,Hf) | g(k−γ∗) = τ(γ∗)g(k) for all γ∗ ∈ Γ∗} ,
equipped with the inner product 〈f , g〉Hτ =

∫
M∗〈f (k), g(k)〉Hf

dk ,
the magnetic Bloch-Floquet transformation is a unitary map

UBF : L2(R2
x)→ Hτ .

The Bloch-Floquet transform ĤMB := UBF HMB U∗BF of the unper-
turbed Hamiltonian HMB acts on ψ ∈ Hτ as

(ĤMBψ)(k) = Hf(k)ψ(k) ,

where
Hf(k) := 1

2

(
− i∇y − A0(y) + k

)2
+ VΓ(y) .
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(ĤMBψ)(k) = Hf(k)ψ(k) ,

where
Hf(k) := 1

2

(
− i∇y − A0(y) + k

)2
+ VΓ(y) .



3. Magnetic Bloch Floquet transformation

Introducing

Hf :=
{

f ∈ L2
loc(R2

y ) |Tγf = f for all γ ∈ Γ
}
,

and

Hτ := {g ∈ L2
loc(R2

k ,Hf) | g(k−γ∗) = τ(γ∗)g(k) for all γ∗ ∈ Γ∗} ,
equipped with the inner product 〈f , g〉Hτ =

∫
M∗〈f (k), g(k)〉Hf

dk ,
the magnetic Bloch-Floquet transformation is a unitary map

UBF : L2(R2
x)→ Hτ .
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3. Magnetic Bloch bands

Hf(k) has discrete spectrum with eigenvalues En(k) of finite multi-
plicity that accumulate at infinity. Let

E1(k) ≤ E2(k) ≤ . . .
be the eigenvalues repeated according to their multiplicity. In the
following, k 7→ En(k) will be called the nth band function or just the
nth Bloch band.

Since Hf(k) is τ -equivariant, i.e.

Hf(k − γ∗) = τ(γ∗) Hf(k) τ(γ∗)−1 ,

and τ(γ∗) is unitary, the Bloch bands En(k) are Γ∗-periodic functi-
ons.
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4. Results

Theorem

Let {En(k)}n∈I be an isolated family of Bloch bands. Then there
exists an orthogonal projection Πε

I ∈ L(Hτ ) such that HεΠε
I is a

bounded operator and

‖[Hε,Πε
I ]‖ = O(ε∞) .

Moreover, Πε
I is close to a pseudodifferential operator Opτ(π),

‖Πε
I −Opτ(π)‖ = O(ε∞) , (∗)

with principal symbol π0(k, r) = PI (k − A(r)).

If {En(k)}n∈I is strictly isolated and if the gaps remain open for
ε ∈ (0, ε0], then (∗) holds for Πε

I being the corresponding spectral
projection of Hε.
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Theorem

Let {En(k)}n∈I be an isolated family of Bloch bands. Then there
exists an orthogonal projection Πε

I ∈ L(Hτ ) such that HεΠε
I is a

bounded operator and

‖[Hε,Πε
I ]‖ = O(ε∞) .

Moreover, Πε
I is close to a pseudodifferential operator Opτ(π),

‖Πε
I −Opτ(π)‖ = O(ε∞) , (∗)

with principal symbol π0(k, r) = PI (k − A(r)).

The construction is well known and based on methods developed
by Helffer and Sjöstrand in ’89 that were applied in similar ways by
Martinez, Nenciu and Sordoni in ’03.



4. Results

For simplicity we focus on one non-degenerate band En, i.e. I = {n}.

To prove “Peierls substitution”, we need to show that Πε
nHεΠε

n is
unitarily equivalent to an operator of the form

Heff
n = En

(
k + A(iε∇k)

)
+ W (iε∇k) +O(ε)

acting on some suitable space Heff of functions of k .

For the case A0 = 0 this was achieved in Panati, Spohn, T. ’03,
where we also computed the first order correction term to Peierls
substitution. In this case

Heff = L2(T∗k)

where T∗k denotes M∗ with opposing edges identified.
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4. Results

The key ingredient for constructing the corresponding unitary map

Uε
n : ranΠε

n → L2(T∗k)

is a trivializing section of the Bloch bundle.

Definition Let the bundle π : Ξτ → T∗ with typical fibre Hf be
given by

Ξτ := (R2 ×Hf)/∼τ ,
where

(k , ϕ) ∼τ (k ′, ϕ′) :⇔ ∃γ∗ ∈ Γ∗ : k ′ = k−γ∗ and ϕ′ = τ(γ∗)ϕ .

As a consequence, Hτ = L2(Ξτ ).

The Bloch bundle Ξn associated to the isolated Bloch band
En(k) is the subbundle of Ξτ given by

Ξn := {(k , ϕ) ∈ R2 ×Hf |ϕ ∈ Pn(k)Hf}/∼τ .



4. Results

The key ingredient for constructing the corresponding unitary map

Uε
n : ranΠε

n → L2(T∗k)

is a trivializing section of the Bloch bundle.

Definition Let the bundle π : Ξτ → T∗ with typical fibre Hf be
given by

Ξτ := (R2 ×Hf)/∼τ ,
where

(k , ϕ) ∼τ (k ′, ϕ′) :⇔ ∃γ∗ ∈ Γ∗ : k ′ = k−γ∗ and ϕ′ = τ(γ∗)ϕ .

As a consequence, Hτ = L2(Ξτ ).

The Bloch bundle Ξn associated to the isolated Bloch band
En(k) is the subbundle of Ξτ given by

Ξn := {(k , ϕ) ∈ R2 ×Hf |ϕ ∈ Pn(k)Hf}/∼τ .



4. Results

The key ingredient for constructing the corresponding unitary map

Uε
n : ranΠε

n → L2(T∗k)

is a trivializing section of the Bloch bundle.

Definition Let the bundle π : Ξτ → T∗ with typical fibre Hf be
given by

Ξτ := (R2 ×Hf)/∼τ ,
where

(k , ϕ) ∼τ (k ′, ϕ′) :⇔ ∃γ∗ ∈ Γ∗ : k ′ = k−γ∗ and ϕ′ = τ(γ∗)ϕ .

As a consequence, Hτ = L2(Ξτ ).

The Bloch bundle Ξn associated to the isolated Bloch band
En(k) is the subbundle of Ξτ given by

Ξn := {(k , ϕ) ∈ R2 ×Hf |ϕ ∈ Pn(k)Hf}/∼τ .



4. Results

For A0 = 0 it was shown by Panati ’07 that Bloch bundles are al-
ways trivializable. On the other hand, for A0 6= 0 Bloch bundles are
non-trivial in general, as they have non-zero Chern numbers.

Theorem (Freund, T. ’13)

To each isolated magnetic Bloch band En there exists a unitary

Uε
n : ranΠε

n → Hθ

such that Heff
n := Uε

nΠε
nHεΠε

nUε∗
n satisfies

Heff
n = En

(
k + A(iε∇θk)

)
+ W (iε∇θk) +O(ε) .

Here Hθ = L2(Ξθ) contains L2-section of a line-bundle Ξθ over the
torus T∗ with connection ∇θ determined by the Chern number θ ∈ Z
of the Bloch bundle Ξn.
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Main steps in the construction:

I Construct geometric Weyl-calculus for pseudodifferential
operators acting on sections of non-trivial vector bundles over
the torus.

Based on Widom ’80, Safarov ’98, Pflaum ’98, Sharafutdinov
’05, Hansen ’10.

I Construct a “canonical” reference bundle Ξθ with “canonical”
connection ∇θ.

I Construct the unitary Uε
n .

I Compute asymptotic expansion of Heff
n .
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5. Canonical models for non-zero Chern numbers

The dispersion of the discrete Laplacian on Z2 is

E (k) = 2
(

cos(k1) + cos(k2)
)

= eik1 + e−ik1 + eik2 + e−ik2 .

The Fourier transform of the discrete magnetic Laplacian is

HB
Hof = eiK1 + e−iK1 + eiK2 + e−iK2 ,

and acts on L2
(
[0, 2π)2

)
with K1 = k1 + iB∂k2 and K2 = k2.

HB
Hof is called the Hofstadter Hamiltonian and it is given exactly

by Peierls substitution,

HB
Hof = E

(
k − A(i∇k)

)
with A(r) = (−Br2, 0) .

The Hofstadter Hamiltonian is the canonical model for a
non-magnetic Bloch band perturbed by a small magnetic field B.
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5. Canonical models for non-zero Chern numbers

Taking E (k) as the dispersion of a magnetic Bloch band with Chern
number θ ∈ Z, our Peierls substitution yields the canoncial model
for a magnetic Bloch band perturbed by a small magnetic field B.

HB
θ := E

(
k − A(i∇θk)

)
= eiKθ

1 + e−iKθ
1 + eiKθ

2 + e−iKθ
2

with
Kθ1 = k1 + B(i∂k2 − θ

2πk1) and Kθ2 = k2

acting on

L2(Ξθ) =
{

f ∈ L2
loc(R2)

∣∣∣ f (k−γ∗) = e
iθk2γ

∗
1

2π f (k) for all γ∗ ∈ 2πZ2
}
.

Note that HB
0 ≡ HB

Hof .
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Thanks for your attention !


