Resolvent expansions and continuity of the scattering matrix at embedded thresholds: quantum waveguides

> Rafael Tiedra (Catholic University of Chile)

> > CIRM, June 2014

Joint work with S. Richard (University of Lyon/Nagoya)

Contents

1	General setup	3
2	Asymptotic expansion	5
3	Application to quantum waveguides	12
4	References	21

1 General setup

- \mathcal{H} , Hilbert space with norm $\|\cdot\|$ and scalar product $\langle\cdot,\cdot\rangle$
- $\mathscr{B}(\mathcal{H})$, bounded linear operators on \mathcal{H}
- *H*, self-adjoint operator in \mathcal{H} with spectrum $\sigma(H)$

•
$$\mathbb{C}_{\pm} := \left\{ z \in \mathbb{C} \mid \pm \operatorname{Im}(z) > 0 \right\}$$

Basic motivation: For $z \in \mathbb{C}_{\pm}$, determine the behaviour of the resolvent $R(z) := (H - z)^{-1}$ as $z \to z_0 \in \sigma(H)$.

(useful for spectral theory, scattering theory, propagation estimates, ...)

If $v=v^*\in \mathscr{B}(\mathcal{H})$ and $u=u^*=u^{-1}\in \mathscr{B}(\mathcal{H})$ are such that

$$H = H_0 + v \, u \, v,$$

then the resolvent equation reads

$$uvR(z)vu = u - \underbrace{\left(u - vR_0(z)v\right)^{-1}}_{= A(z)^{-1} \text{ later}}$$
 with $R_0(z) := (H_0 - z)^{-1}.$

Example. If $H - H_0 = V$ with $V \in \mathsf{L}^\infty(\mathbb{R}^d;\mathbb{R})$, then $v(x) := |V(x)|^{1/2}$ and

$$u(x):=egin{cases} +1 & ext{if} \,\,\, V(x)\geq 0 \ -1 & ext{if} \,\,\, V(x)< 0. \end{cases}$$

2 Asymptotic expansion

Proposition. Let $O \subset \mathbb{C}$ with 0 as accumulation point, let $A(z) = A_0 + zA_1(z)$ with $A_0 \in \mathscr{B}(\mathcal{H})$ and $||A_1(z)|| \leq \text{Const.}$ for all $z \in O$, and let $S = S^2 \in \mathscr{B}(\mathcal{H})$ be such that

 $egin{aligned} (i) \ A_0+S \ is \ boundedly \ invertible \ & and \ & (ii) \ S(A_0+S)^{-1}S=S. \end{aligned}$ Then, for $|z| \ small \ enough \ the \ operator \ B(z):S\mathcal{H} o S\mathcal{H}$ $B(z):=rac{1}{z} \left(S-Sig(A(z)+Sig)^{-1}Sig)\equiv S(A_0+S)^{-1}\sum_{j\geq 0}(-z)^jig\{A_1(z)(A_0+S)^{-1}ig\}^{j+1}Sig\}$

is uniformly bounded as $z \to 0$. Also, A(z) is boundedly invertible in \mathcal{H} if and only if B(z) is boundedly invertible in $S\mathcal{H}$, in which case

$$A(z)^{-1} = (A(z) + S)^{-1} + \frac{1}{z} (A(z) + S)^{-1} SB(z)^{-1} S(A(z) + S)^{-1}.$$

- The original version of this proposition is due to [Jensen-Nenciu 2001/2004] (see also [Erdoğan-Schlag 2004]).
- In the previous works, one either has that $A_0 = A_0^*$ or that S is a Riesz projection (a projection $S = S^2$ given in terms of a contour integral of the resolvent of a closed operator).

Riesz projection

There are two natural choices for S, a Riesz projection $S = S_r$ or an orthogonal projection $S = S_o$. We start with the Riesz projection.

Assumption A. 0 is an isolated point in $\sigma(A_0)$

Let S_r be the Riesz projection associated with $0 \in \sigma(A_0)$. Then,

 $A_0S_r = S_rA_0 = S_rA_0S_r$ and A_0+S_r is boundedly invertible.

Thus, the hypothesis (i) of the proposition is verified.

A sufficient condition for the hypothesis (ii) of the proposition is $A_0S_r = 0$ (which is true for example if $A_0 = A_0^*$), because

$$egin{aligned} S_r(A_0+S_r)^{-1}S_r &= (A_0+S_r)S_r(A_0+S_r)^{-1}S_r\ &= S_r(A_0+S_r)(A_0+S_r)^{-1}S_r\ &= S_r \end{aligned}$$

(in general A_0S_r is only quasi-nilpotent; that is, $\sigma(A_0S_r) = \{0\}$)

Assumption B. $Im(A_0) \ge 0$

Assumption C. $S_r A_0 S_r$ is a trass-class operator

Lemma. If Assumptions A, B, C are verified, then $A_0S_r = 0$.

Proof. The operator $J := S_r A_0 S_r$ in $S_r \mathcal{H}$ satisfies

$$\mathsf{Im}\left\langle S_{r}\varphi,JS_{r}\varphi\right\rangle =\mathsf{Im}\left\langle S_{r}\varphi,S_{r}A_{0}S_{r}S_{r}\varphi\right\rangle =\mathsf{Im}\left\langle S_{r}\varphi,A_{0}S_{r}\varphi\right\rangle \geq 0.$$

Since J is quasi-nilpotent and trace-class, it follows

$$0 = \operatorname{Tr}(J) = \operatorname{Tr}(\operatorname{Re}(J)) + i \underbrace{\operatorname{Tr}(\operatorname{Im}(J))}_{\geq 0} \implies Im(J) = 0$$
$$\implies J = J^*$$
$$\implies J = 0.$$

Thus, the hypothesis (ii) of the proposition is verified.

Orthogonal projection

Assumption B. $Im(A_0) \ge 0$

Let S_o be the orthogonal projection on

$$\ker(A_0) \equiv \ker(\operatorname{\mathsf{Re}}(A_0)) \cap \ker(\operatorname{\mathsf{Im}}(A_0)) \equiv \ker(A_0^*).$$

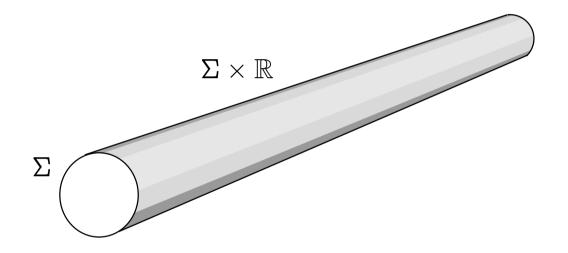
Then, $A_0S_o = 0$, and thus the hypotheses (i) and (ii) of the proposition are verified if $A_0 + S_o$ is boundedly invertible.

Two cases in which $A_0 + S_o$ is boundedly invertible:

Lemma. If Assumptions A, B, C are verified, then $A_0 + S_o$ is boundedly invertible if and only if $S_r = S_r^* = S_o$.

Lemma. If Assumption B is verified and if A_0 is a finite-rank operator or $A_0 = U + K$ with U unitary and K compact, then $A_0 + S_o$ is boundedly invertible.

3 Application to quantum waveguides



- Σ , bounded open connected set in \mathbb{R}^{d-1} , $d \geq 2$,
- $\Omega := \Sigma \times \mathbb{R}$
- $\mathcal{H} := \mathsf{L}^2(\Omega) \simeq \mathsf{L}^2(\Sigma) \otimes \mathsf{L}^2(\mathbb{R})$

Free Hamiltonian and perturbed Hamiltonian

$$H_0:=- riangle_{\mathrm{D}}^\Sigma\otimes 1+1\otimes (- riangle^{\mathbb{R}}) \qquad ext{and} \qquad H:=H_0+V,$$

with $-\triangle_D^{\Sigma}$ the Dirichlet Laplacian on Σ and $V \in L^{\infty}(\Omega; \mathbb{R})$ of compact support.

The Dirichlet Laplacian $-\triangle_D^{\Sigma}$ has purely discrete spectrum

$$au := \{\lambda_n\}_{n\geq 1}$$

consisting in eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots$ repeated according to multiplicity (these are the embedded thresholds). \mathcal{P}_n is the orthogonal projection associated with λ_n .

Known facts (see for instance [T. 2006]):

- $\sigma(H) = \sigma_{\mathrm{ess}}(H) = \sigma_{\mathrm{ac}}(H) = [\lambda_1, \infty)$
- $\sigma_{\rm p}(H)$ can accumulate at points of au only
- the wave operators $W_\pm:= ext{s-}\lim_{t o\pm\infty} ext{e}^{itH}\, ext{e}^{-itH_0}$ exist and are complete
- the scattering operator $U := W_+^* W_-$ is unitary

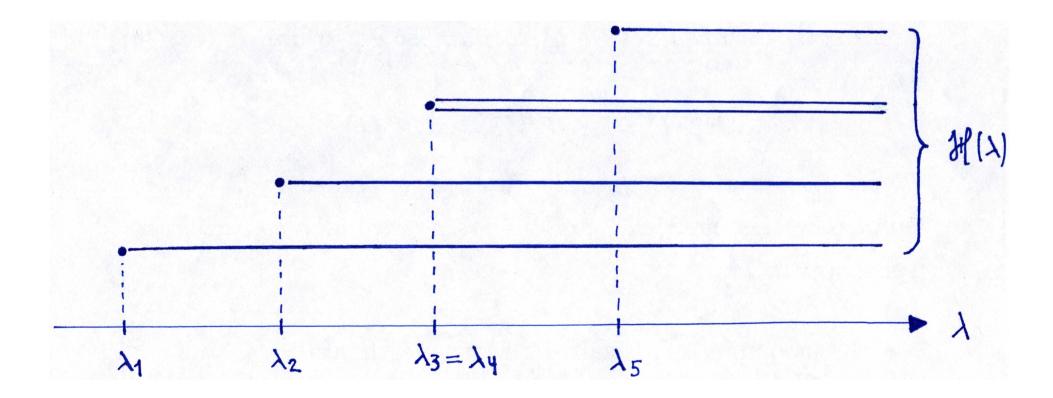
15/21

S is decomposable in the spectral representation of H_0 as follows. For $\lambda \geq \lambda_1$, set

$$\mathbb{N}(\lambda):=ig\{n\geq 1\mid \lambda_n\leq \lambdaig\}$$

and

$$\mathcal{H}(\lambda) := igoplus_{n \in \mathbb{N}(\lambda)} \left\{ \mathcal{P}_n \, \mathsf{L}^2(\Sigma) \oplus \mathcal{P}_n \, \mathsf{L}^2(\Sigma)
ight\}.$$



There is a unitary operator $\mathscr{F}_0: \mathcal{H} \to \int_{[\lambda_1,\infty)}^{\oplus} \mathcal{H}(\lambda) \, d\lambda$ such that

$$\mathscr{F}_0 H_0 \mathscr{F}_0^* = \int_{[\lambda_1,\infty)}^{\oplus} \lambda \,\mathrm{d}\lambda \qquad ext{and} \qquad \mathscr{F}_0 \, S \mathscr{F}_0^* = \int_{[\lambda_1,\infty)}^{\oplus} S(\lambda) \,\mathrm{d}\lambda,$$

with $S(\lambda)$ unitary in $\mathcal{H}(\lambda)$ for a.e. $\lambda \geq \lambda_1$, and with

$$[\lambda_1,\infty)\setminusig\{ au\cup\sigma_{
m p}(H)ig\}\mapsto S(\lambda)\in\mathscr{B}ig(\mathcal{H}(\lambda)ig)$$

of class C^{∞} .

(it remains to determine the behavior of $S(\lambda)$ as $\lambda o \lambda_0 \in au \cup \sigma_{
m p}(H) \dots)$

For a.e. $\lambda \geq \lambda_1$, let $S(\lambda) \equiv \{S_{nn'}(\lambda)\}_{n,n'\in\mathbb{N}(\lambda)}$ with $S_{nn'}(\lambda): \mathcal{P}_{n'}\mathsf{L}^2(\Sigma) \to \mathcal{P}_n\mathsf{L}^2(\Sigma).$

The behaviour of $S_{nn'}(\lambda)$ as $\lambda \to \lambda_0 \in \tau$ is the following:

Theorem ([Richard, T. 2014]). Let $\lambda_m \in \tau$ and $n, n' \geq 1$. Then,

(a) if $\lambda_n, \lambda_{n'} < \lambda_m$, the map $\lambda \mapsto S_{nn'}(\lambda)$ is continuous in a neighbourhood of λ_m ,

(b) if $\lambda_n, \lambda_{n'} \leq \lambda_m$, the limit $\lim_{\varepsilon \searrow 0} S_{nn'}(\lambda_m + \varepsilon)$ exists.

- One cannot ask for more continuity in (b), since a channel could open at the energy λ_m .
- The case $\lambda \to \lambda_0 \in \sigma_{\mathrm{p}}(H)$ is easier to treat.

Idea of the proof. Use a stationary representation

$$S(\lambda) = 1_{\mathcal{H}(\lambda)} - 2\pi i \mathscr{F}_0(\lambda) v ig(u + v R_0(\lambda + i0) vig)^{-1} v \mathscr{F}_0(\lambda)^*$$

with $\mathscr{F}_0(\lambda)\varphi := (\mathscr{F}_0\varphi)(\lambda)$, and then apply iteratively Proposition 2 to get an asymptotic expansion for $(u + vR_0(\lambda_m + \varepsilon)v)^{-1}$ for suitable small $\varepsilon \in \mathbb{C}$.

An asymptotic expansion for $\mathscr{F}_0(\lambda_m + \varepsilon)$ is also necessary.

• In the proof, the iterations stop because

$$uvR(\lambda_m+arepsilon)vu=u-ig(u+vR_0(\lambda_m+arepsilon)vig)^{-1}$$

and for suitable arepsilon (such as $arepsilon=\pm i\,\delta,\,\delta>0)$

$$ig\|arepsilon R(\lambda_m+arepsilon)ig\|\leq 1 \implies \limsup_{arepsilon
ightarrow 0} ig\|arepsilonig(u+vR_0(\lambda_m+arepsilon)vig)^{-1}ig\|<\infty.$$

 Another consequence of the asymptotic expansion for
 (u + vR₀(λ_m + ε)v)⁻¹ is the absence of accumulation of
 eigenvalues of H at the points of τ.

20/21

Gracias !

4 References

• A. Jensen and G. Nenciu. A unified approach to resolvent expansions at thresholds. *Rev. Math. Phys.*, 2001/2004

• S. Richard and R. Tiedra. Resolvent expansions and continuity of the scattering matrix at embedded thresholds. preprint on arXiv

• R. Tiedra. Time delay and short-range scattering in quantum waveguides. Ann. Henri Poincaré, 2006